# 6.8 Circular motion with constant acceleration  (Page 2/4)

 Page 2 / 4

$\begin{array}{l}\omega ={\omega }_{0}+\alpha t\end{array}$

As a matter of fact, there exists one to one correspondence between two types of equation sets. Importantly, we can treat angular vector quantities as signed scalars in the equations of motion, dispensing with the need to use vector notation. The similarity of situation suggests that we need not derive equations of motion again for the circular motion. We, therefore, proceed to simply write equation of angular motion with appropriate substitution.

In this section of circular motion kinematics, our interest or domain of study is usually limited to the motion or acceleration in tangential direction. We may not refer to the requirement of motion in the radial direction in the form of centripetal acceleration, unless stated specifically.

## What corresponds to what ?

The correspondence goes like this : the angular position is “θ” for linear “x”; the angular displacement is “Δθ” for linear “Δx”; the angular velocity is “ω” for linear “v” and the angular acceleration is “α” for linear “a”.

## Angular quantities

The different angular quantities corresponding to their linear counterparts are listed here fore ready reference :

$\begin{array}{lll}\text{Quantities}& \text{Linear variables}& \text{Angular variables}\\ \text{Initial position}& {x}_{0}& {\theta }_{0}\\ \text{Final position}& x& \theta \\ \text{Displacement}& \Delta x& \Delta \theta \\ \text{Initial velocity}& {v}_{0}& {\omega }_{0}\\ \text{Final velocity}& v& \omega \\ \text{Acceleration}& a& \alpha \\ \text{Time interval}& t& t\end{array}$

## Basic equations

The corresponding equations for the two types of motion are :

$\begin{array}{lll}\text{S.N.}& \text{Linear equation}& \text{Angular equation}\\ \text{1:}& v={v}_{0}+at& \omega ={\omega }_{0}+\alpha t\\ \text{2:}& {v}_{\mathrm{avg}}=\frac{\left({v}_{0}+v\right)}{2}& \theta {\omega }_{\mathrm{avg}}=\frac{\left({\omega }_{0}+\omega \right)}{2}\\ \text{3:}& \Delta x=x-{x}_{0}={v}_{0}t+\frac{1}{2}a{t}^{2}& \Delta \theta =\theta -{\theta }_{0}={\omega }_{0}t+\frac{1}{2}\alpha {t}^{2}\end{array}$

## Derived equations

The derived equations for the two types of motion are :

$\begin{array}{lll}\text{S.N.}& \text{Linear equation}& \text{Angular equation}\\ \text{1:}& {v}^{2}={{v}_{0}}^{2}+2a\left(x-{x}_{0}\right)& {\omega }^{2}={{\omega }_{0}}^{2}+2\alpha \left(\theta -{\theta }_{0}\right)\\ \text{2:}& \Delta x=\left(x-{x}_{0}\right)=\frac{\left({v}_{0}+v\right)t}{2}& \Delta \theta =\left(\theta -{\theta }_{0}\right)=\frac{\left({\omega }_{0}+\omega \right)t}{2}\\ \text{3:}& \Delta x=x-{x}_{0}=vt-\frac{1}{2}a{t}^{2}& \Delta \theta =\theta -{\theta }_{0}=\omega t-\frac{1}{2}\alpha {t}^{2}\end{array}$

## Sign of angular quantities

The sign of angular quantities represents direction. A positive sign indicates anti-clockwise direction, whereas a negative sign indicates clockwise direction.

In the measurement of angle, a typical problem arises from the fact that circular motion may continue to rotate passing through the reference point again and again. The question arises, whether we keep adding angle or reset the measurement from the reference point ? The answer is that angle measurement is not reset in rotational kinematics. This means that we can have measurements like 540° and 20 rad etc.

This convention is not without reason. Equations of motion of circular motion with constant acceleration treats motion in an equivalent linear frame work, which considers only one reference position. If we reset the measurements, then equations of motion would not be valid.

Problem : The angular velocity – time plot of the circular motion is shown in the figure. (i) Determine the nature of angular velocity and acceleration at positions marked A, B, C, D and E. (ii) In which of the segments (AB, BC, CD and DE) of motion, the particle is decelerated and (iii) Is angular acceleration constant during the motion ?

Solution :

(i) Angular velocity :

The angular velocities at A and E are positive (anti-clockwise). The angular velocities at B and D are each zero. The angular velocities at C is negative (clockwise).

Angular acceleration :

The angular acceleration is equal to the first differential of angular velocity with respect to time.

$\begin{array}{l}\alpha =\frac{đ\omega }{đt}\end{array}$

The sign of the angular acceleration is determined by the sign of the slope at different positions. The slopes at various points are as shown in the figure :

The angular accelerations at point A and B are negative (angular speed decreases with the passage of time). The angular accelerations at C is zero. The angular accelerations at point D and E are positive (angular speed increases with the passage of time).

(ii) Deceleration :

In the segments AB and CD, the magnitude of angular velocity i.e. angular speed decreases with the passage of time. Thus, circular motions in these two segments are decelerated. This is also confirmed by the fact that angular velocity and angular acceleration are in opposite directions in these segments.

(iii) The slopes on angular velocity - time plot are different at different points. Thus, angular accelerations are different at these points. Hence, angular acceleration of the motion is not constant.

#### Questions & Answers

A stone propelled from a catapult with a speed of 50ms-1 attains a height of 100m. Calculate the time of flight, calculate the angle of projection, calculate the range attained
water boil at 100 and why
what is upper limit of speed
what temperature is 0 k
Riya
0k is the lower limit of the themordynamic scale which is equalt to -273 In celcius scale
Mustapha
How MKS system is the subset of SI system?
which colour has the shortest wavelength in the white light spectrum
how do we add
if x=a-b, a=5.8cm b=3.22 cm find percentage error in x
x=5.8-3.22 x=2.58
what is the definition of resolution of forces
what is energy?
Ability of doing work is called energy energy neither be create nor destryoed but change in one form to an other form
Abdul
motion
Mustapha
highlights of atomic physics
Benjamin
can anyone tell who founded equations of motion !?
n=a+b/T² find the linear express
أوك
عباس
Quiklyyy
Moment of inertia of a bar in terms of perpendicular axis theorem
How should i know when to add/subtract the velocities and when to use the Pythagoras theorem?
Centre of mass of two uniform rods of same length but made of different materials and kept at L-shape meeting point is origin of coordinate