<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Hints for solving problems

We resolve a force along the axes of a coordinate system (see Components of a vector ) in following manner :

1 : Select coordinate system such that maximum numbers of forces are along the axes of chosen coordinate system.

2 : Determine “x” and “y” components of force by considering acute angle between the direction of axis and force.

3 : Use cosine of the acute angle for the component of axis with which angle is measured. Use sine of the angle for the axis perpendicular to the other axis. If “θ” be the angle that the force vector makes with x – axis, then components along “x” and “y” axes are :

F x = F cos θ

F y = F sin θ

4 : If the component i.e. projection of force is in the opposite direction of the reference axis, then we prefix the component with a negative sign.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the analysis framework for law of motion. The questions are categorized in terms of the characterizing features of the subject matter :

  • Balanced forces
  • Unbalanced forces
  • Acceleration due to gravity
  • Forces on an incline

Balanced forces

Problem 1 : Two small spherical objects of mass “m” and “M” are attached with strings as shown in the figure. Find the angle “θ” such that the given system is in equilibrium.

Balanced forces

Two blocks are hanging with the help of three strings.

Solution : Every point of the system is under action of balanced force system. We shall work through the points "A" and "B", where masses are attached.

Forces on the objects

Forces on the spherical objects are weights and tensions as shown.

Let “ T 1 ” and “ T 2 ” be the tensions in the two strings, meeting at point "A". The forces at "A" are shown in the figure above. Considering balancing of forces in "x" and "y" directions :

F x = T 1 cos 45 0 - T 2 cos 45 0 = 0

T 1 = T 2 = T say

F y = T 1 sin 45 0 + T 1 sin 45 0 = m g

T sin 45 0 + T sin 45 0 = m g

2 T 2 = m g

T = m g 2

Let “ T 3 ” be the tension in the upper section. The forces on the mass “M” is shown in the figure above. Considering balancing of forces in "x" and "y" directions :

F x = T 3 cos θ - T sin 45 0 = 0

Substituting for “T” and evaluating, we have :

T 3 cos θ = m g 2 X 1 2 = m g 2

F y T 3 sin θ = T cos 45 0 + M g

Substituting for "T",

T 3 sin θ = T 2 + M g = m g 2 X 1 2 + M g

T 3 sin θ = mg 2 + M g

Taking ratio of the resulting equations in the analysis of forces on "M",

tan θ = m g 2 + M g m g 2

tan θ = 1 + 2 M m

θ = tan 1 1 + 2 M m

Unbalanced forces

Problem 2 : A force “F” produces an acceleration “a” when applied to a body of mass “m”. Three coplanar forces of the same magnitudes are applied on the same body simultaneously as shown in the figure. Find the acceleration of the body.

Forces on a body

Three forces act on a body as shown.

Solution : We select two axes of coordinate system so that they align with two mutually perpendicular forces as shown in the figure. We keep in mind that three forces are coplanar.

Coordinate system

Coordinate system is selected to align with force.

Taking components of forces in “x” and “y” directions,

F x = F F cos 30 0 = F 1 3 2 = F 2 3 2

F y = F F sin 30 0 = F 1 1 2 = F 2

The net force is given by :

F n e t = F x 2 + F y 2 = F 2 { 1 + 2 3 2 }

F n e t = F 2 1 + 4 + 3 4 3

F net = F 2 8 4 3

F net = F 2 3

But, it is given that F = ma. Substituting for "F" in the equation, we have :

F net = m a 2 3

Let acceleration of the body under three coplanar forces be a’. Then,

m a = m a 2 3

a = a 2 3

Acceleration due to gravity

Problem 3 : A small cylindrical object slides down the smooth groove of 10 m on the surface of an incline plane as shown in the figure. If the object is released from the top end of the groove, then find the time taken to travel down the length.

Motion along a groove

The cylindrical object slides down the smooth groove.

Solution : In order to find the time taken to travel down the incline, we need to know acceleration along the groove. The object travels under the influence of gravity. The component of acceleration due to gravity along the incline (GE), as shown in the figure below, is :

a = g cos 60 0

Component of acceleration due to gravity

Acceleration due to gravity is resolved along the groove in two stages.

This component of acceleration makes an angle 60° with the groove. Hence, component of acceleration along the groove (CA) is given as :

a = a cos 60 0

Combining two equations, the acceleration along the groove, "a", is :

a = g cos 60 0 cos 60 0 = g X 1 2 X 1 2 = g 4

The acceleration along the groove is constant. As such, we can apply equation of motion for constant acceleration :

x = u t + 1 2 a t 2

10 = 0 + 1 2 X g 4 X t 2

t = ( 80 g ) = 8 = 2 2 s

Forces on an incline

Problem 4 : Four forces act on a block of mass “m”, placed on an incline as shown in the figure. Then :

A block on an incline

A force "F" acts as shown.

  • Resolve forces along parallel and perpendicular to incline and find net component forces in two directions.
  • Resolve forces along horizontal and vertical directions and find net component forces in two directions.

Solution : The free body diagram with four forces with coordinates are as shown in the figure below.

A block on an incline

Forces are resolved in directions parallel and perpendicular to incline.

The net component of forces along two axes are :

F x = F cos α F F m g sin θ

F y = N + F sin α m g cos θ

Now, we select “x” and “y” axes along horizontal and vertical directions as shown. Note the angles that different forces make with the axes.

A block on an incline

Forces are resolved in horizontal and vertical directions.

The net component of forces along two axes are :

F x = F cos α + θ N sin θ F F cos θ

F y = N cos θ + F sin α + θ m g F F sin θ

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask