<< Chapter < Page Chapter >> Page >

The position vector of a particle in circular motion is given in terms of components as :

Position vector

Position vector of a particle moving along a circular path.

r = r n = x i + y j = r cos θ i + r sin θ j

1: Velocity

The velocity of the particle, therefore, is obtained by differentiating with respect to time,:

v = đ r đ t = ( - r sin θ i + r cos θ j ) đ θ đ t

v = ( - r ω sin θ i + r ω cos θ j ) = - r ω t

where ω = dθ/dt is angular velocity. Also note that velocity is directed tangentially to path. For this reason, velocity vector is expressed with the help of unit vector in tangential direction.

2: Acceleration

The acceleration of the particle is obtained by differentiating the above expression of velocity with respect to time. However, as the radius of the circle is a constant, we take the same out of the differentiation,

a = đ v đ t = { r ω đ đ t ( - sin θ i + cos θ j ) } + { r ( - sin θ i + cos θ j ) đ ω đ t } a = { r ω ( - cos θ i - sin θ j ) đ θ đ t } + { r ( - sin θ i + cos θ j ) đ ω đ t } a = - r ω 2 n + r đ ω đ t t a = - v 2 r n + đ v đ t t

Thus, we see that :

a T = đ v đ t a N = - v 2 r

The above expressions, therefore, give two components of total acceleration in two specific directions. Again, we should emphasize that these directions are not the same as coordinate directions.

The derivation of acceleration components for two dimensional motion has, though, been carried out for circular motion, but the concepts of acceleration components as defined here can be applied - whenever there is curvature of path (non-linear path). In the case of rectilinear motion, normal acceleration reduces to zero as radius of curvature is infinite and as such total acceleration becomes equal to tangential acceleration.

Elliptical motion

In order to illustrate the features of two dimensional motion, we shall consider the case of elliptical motion of a particle in a plane. We shall use this motion to bring out the basic elements associated with the understanding of acceleration and its relation with other attributes of motion.

It is important that we work with the examples without any pre-notion such as “constant” acceleration etc. The treatment here is very general and intuitive of the various facets of accelerated motion in two dimensions.

Path of motion

Problem : The coordinates of a particle moving in a plane are given by x = A cos(ωt) and y = B sin (ωt) where A, B (<A) and ω are positive constants. Find the nature of path of motion.

Solution : We shall use the general technique to find path of motion in two dimensional case. In order to find the path motion, we need to have an equation that connects “x” and “y” coordinates of the planar coordinate system. Note that there is no third coordinate.

Elliptical motion

Motion of a particle moving along an elliptical path path.

An inspection of the expressions of “x” and “y” suggests that we can use the trigonometric identity,

sin 2 θ + cos 2 θ = 1

Here, we have :

x = A cos ( ω t ) cos ( ω t ) = x A

Similarly, we have :

y = B sin ( ω t ) sin ( ω t ) = y B

Squaring and adding two equations,

sin 2 ( ω t ) + cos 2 ( ω t ) = 1

x 2 A 2 + y 2 B 2 = 1

This is an equation of ellipse. Hence, the particle follows an elliptical path.

Got questions? Get instant answers now!

Nature of velocity and acceleration

Problem : The coordinates of a particle moving in a plane are given by x = A cos(ωt) and y = B sin (ωt) where A, B (<A) and ω are positive constants. Investigate the nature of velocity and acceleration for this motion. Also, discuss the case for A = B and when "ω" is constant.

Solution : We can investigate the motion as required if we know expressions of velocity and acceleration. Therefore, we need to determine velocity and acceleration. Since components of position are given, we can find components of velocity and acceleration by differentiating the expression with respect to time.

1: Velocity

The components of velocity in “x” and “y” directions are :

đ x đ t = v x = - A ω sin ( ω t ) đ y đ t = v y = B ω cos ( ω t )

The velocity of the particle is given by :

v = ω { - A sin ( ω t ) i + B cos ( ω t ) j }

Evidently, magnitude and direction of the particle varies with time.

2: Acceleration

We find the components of acceleration by differentiating again, as :

đ 2 x đ t 2 = a x = - A ω 2 cos ( ω t ) đ 2 y đ t 2 = a y = - B ω 2 sin ( ω t )

Both “x” and “y” components of the acceleration are trigonometric functions. This means that acceleration varies in component direction. The net or resultant acceleration is :

a = - ω 2 { A cos ( ω t ) i + B sin ( ω t ) j }

3: When A = B and "ω" is constant

When A = B, the elliptical motion reduces to circular motion. Its path is given by the equation :

x 2 A 2 + y 2 B 2 = 1

x 2 A 2 + y 2 A 2 = 1

x 2 + y 2 = A 2

This is an equation of circle of radius “A”. The speed for this condition is given by :

v = { A 2 ω 2 sin 2 ( ω t ) + A 2 ω 2 cos 2 ( ω t ) } v = A ω

Thus, speed becomes a constant for circular motion, when ω = constant.

The magnitude of acceleration is :

a = ω 2 { A 2 sin 2 ( ω t ) + A 2 cos 2 ( ω t ) } a = A ω 2

Thus, acceleration becomes a constant for circular motion, when ω = constant.

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask