<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the uniform circular motion. The questions are categorized in terms of the characterizing features of the subject matter :

  • Direction of velocity
  • Direction of position vector
  • Velocity
  • Relative speed
  • Nature of UCM

Direction of velocity

Problem : A particle moves in xy-plane along a circle of radius "r". The particle moves at a constant speed in anti-clockwise direction with center of circle as the origin of the coordinate system. At a certain instant, the velocity of the particle is i – √3 j . Determine the angle that velocity makes with x-direction.

Solution : The sign of y-component of velocity is negative, whereas that of x-component of velocity is positive. It means that the particle is in the third quadrant of the circle as shown in the figure.

Top view of uniform circular motion in xy-plane

The acute angle formed by the velocity with x-axis is obtained by considering the magnitude of components (without sign) as :

tan α = v y v x = 3 1 = 3 = tan 60 0

α = 60 0

This is the required angle as measured in clockwise direction from x-axis. If the angle is measured in anti-clockwise direction from positive direction of x-axis, then

α = 360 0 60 0 = 300 0

Got questions? Get instant answers now!

Direction of position vector

Problem : A particle moves in xy-plane along a circle of radius “r”. The particle moves at a constant speed in anti-clockwise direction with center of circle as the origin of the coordinate system. At a certain instant, the velocity of the particle is i – √3 j . Determine the angle that position vector makes with x-direction.

Solution : The sign of y-component of velocity is negative, whereas that of x-component of velocity is positive. It means that the particle is in the third quadrant of the circle as shown in the figure.

Top view of uniform circular motion in xy-plane

The acute angle formed by the velocity with x-axis is obtained by considering the magnitude of components (without sign) as :

tan α = v y v x = 3 1 = 3 = tan 60 0

α = 60 0

But, we know that position vector is perpendicular to velocity vector. By geometry,

θ = 180 0 30 0 = 150 0

This is the angle as measured in clockwise direction from x-axis. If the angle is measured in anti-clockwise direction from positive direction of x-axis, then

α = 360 0 150 0 = 210 0

Note : Recall the derivation of the expression of velocity vector in the previous module. We had denoted “θ” as the angle that position vector makes with x-axis (not the velocity vector). See the figure that we had used to derive the velocity expression.

Top view of uniform circular motion in xy-plane

As a matter of fact “θ” is the angle that velocity vector makes with y-axis (not x-axis). We can determine the angle “θ” by considering the sign while evaluating tan θ,

tan θ = v x v y = 1 3 = tan 150 0

θ = 150 0

Got questions? Get instant answers now!

Velocity

Problem : A particle moves with a speed 10 m/s in xy-plane along a circle of radius 10 m in anti-clockwise direction. The particle starts moving with constant speed from position (r,0), where "r" denotes the radius of the circle. Find the velocity of the particle (in m/s), when its position makes an angle 135° with x – axis.

Solution : The velocity of the particle making an angle "θ" with x – axis is given as :

Uniform circular motion

v = v x i + v y j = v sin θ i + v cos θ j

Here,

v x = - v sin θ = - 10 sin 135 0 = - 10 x ( 1 2 ) = - 5 2 v y = v cos θ = 10 cos 135 0 = 10 x ( - 1 2 ) = - 5 2

Here, both the components are negative.

v = v x i + v y j v = - ( 5 2 i + 5 2 j ) m / s

Got questions? Get instant answers now!

Relative speed

Problem : Two particles tracing a circle of radius 10 m begin their journey simultaneously from a point on the circle in opposite directions. If their speeds are 2.0 m/s and 1.14 m/s respectively, then find the time after which they collide.

Solution : The particles approach each other with a relative speed, which is equal to the sum of their speeds.

v r e l = 2.0 + 1.14 = 3.14 m / s

For collision to take place, the particles need to cover the initial separation with the relative speed as measured above. The time for collision is, thus, obtained as :

t = 2 π r v r e l = 2 x 3.14 x 10 3.14 = 20 s

Got questions? Get instant answers now!

Nature of ucm

Problem : Two particles “A” and “B” are moving along circles of radii " r A " and " r B " respectively at constant speeds. If the particles complete one revolution in same time, then prove that speed of the particle is directly proportional to radius of the circular path.

Solution : As the time period of the UCM is same,

T = 2 π r A v A = 2 π r B v B

v A r A = v B r B

v A v B = r A r B

Hence, speed of the particle is directly proportional to the radius of the circle.

Got questions? Get instant answers now!

Problem : Two particles “A” and “B” are moving along circles of radii " r A " and " r B " respectively at constant speeds. If the particles have same acceleration, then prove that speed of the particle is directly proportional to square root of the radius of the circular path.

Solution : As the acceleration of the UCM is same,

v A 2 r A = v B 2 r B

v A 2 v B 2 = r A r B

v A v B = r A r B

Hence, speed of the particle is directly proportional to square root of the radius of the circular path.

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask