<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the uniform circular motion. The questions are categorized in terms of the characterizing features of the subject matter :

  • Direction of velocity
  • Direction of position vector
  • Velocity
  • Relative speed
  • Nature of UCM

Direction of velocity

Problem : A particle moves in xy-plane along a circle of radius "r". The particle moves at a constant speed in anti-clockwise direction with center of circle as the origin of the coordinate system. At a certain instant, the velocity of the particle is i – √3 j . Determine the angle that velocity makes with x-direction.

Solution : The sign of y-component of velocity is negative, whereas that of x-component of velocity is positive. It means that the particle is in the third quadrant of the circle as shown in the figure.

Top view of uniform circular motion in xy-plane

The acute angle formed by the velocity with x-axis is obtained by considering the magnitude of components (without sign) as :

tan α = v y v x = 3 1 = 3 = tan 60 0

α = 60 0

This is the required angle as measured in clockwise direction from x-axis. If the angle is measured in anti-clockwise direction from positive direction of x-axis, then

α = 360 0 60 0 = 300 0

Got questions? Get instant answers now!

Direction of position vector

Problem : A particle moves in xy-plane along a circle of radius “r”. The particle moves at a constant speed in anti-clockwise direction with center of circle as the origin of the coordinate system. At a certain instant, the velocity of the particle is i – √3 j . Determine the angle that position vector makes with x-direction.

Solution : The sign of y-component of velocity is negative, whereas that of x-component of velocity is positive. It means that the particle is in the third quadrant of the circle as shown in the figure.

Top view of uniform circular motion in xy-plane

The acute angle formed by the velocity with x-axis is obtained by considering the magnitude of components (without sign) as :

tan α = v y v x = 3 1 = 3 = tan 60 0

α = 60 0

But, we know that position vector is perpendicular to velocity vector. By geometry,

θ = 180 0 30 0 = 150 0

This is the angle as measured in clockwise direction from x-axis. If the angle is measured in anti-clockwise direction from positive direction of x-axis, then

α = 360 0 150 0 = 210 0

Note : Recall the derivation of the expression of velocity vector in the previous module. We had denoted “θ” as the angle that position vector makes with x-axis (not the velocity vector). See the figure that we had used to derive the velocity expression.

Top view of uniform circular motion in xy-plane

As a matter of fact “θ” is the angle that velocity vector makes with y-axis (not x-axis). We can determine the angle “θ” by considering the sign while evaluating tan θ,

tan θ = v x v y = 1 3 = tan 150 0

θ = 150 0

Got questions? Get instant answers now!

Velocity

Problem : A particle moves with a speed 10 m/s in xy-plane along a circle of radius 10 m in anti-clockwise direction. The particle starts moving with constant speed from position (r,0), where "r" denotes the radius of the circle. Find the velocity of the particle (in m/s), when its position makes an angle 135° with x – axis.

Solution : The velocity of the particle making an angle "θ" with x – axis is given as :

Uniform circular motion

v = v x i + v y j = v sin θ i + v cos θ j

Here,

v x = - v sin θ = - 10 sin 135 0 = - 10 x ( 1 2 ) = - 5 2 v y = v cos θ = 10 cos 135 0 = 10 x ( - 1 2 ) = - 5 2

Here, both the components are negative.

v = v x i + v y j v = - ( 5 2 i + 5 2 j ) m / s

Got questions? Get instant answers now!

Relative speed

Problem : Two particles tracing a circle of radius 10 m begin their journey simultaneously from a point on the circle in opposite directions. If their speeds are 2.0 m/s and 1.14 m/s respectively, then find the time after which they collide.

Solution : The particles approach each other with a relative speed, which is equal to the sum of their speeds.

v r e l = 2.0 + 1.14 = 3.14 m / s

For collision to take place, the particles need to cover the initial separation with the relative speed as measured above. The time for collision is, thus, obtained as :

t = 2 π r v r e l = 2 x 3.14 x 10 3.14 = 20 s

Got questions? Get instant answers now!

Nature of ucm

Problem : Two particles “A” and “B” are moving along circles of radii " r A " and " r B " respectively at constant speeds. If the particles complete one revolution in same time, then prove that speed of the particle is directly proportional to radius of the circular path.

Solution : As the time period of the UCM is same,

T = 2 π r A v A = 2 π r B v B

v A r A = v B r B

v A v B = r A r B

Hence, speed of the particle is directly proportional to the radius of the circle.

Got questions? Get instant answers now!

Problem : Two particles “A” and “B” are moving along circles of radii " r A " and " r B " respectively at constant speeds. If the particles have same acceleration, then prove that speed of the particle is directly proportional to square root of the radius of the circular path.

Solution : As the acceleration of the UCM is same,

v A 2 r A = v B 2 r B

v A 2 v B 2 = r A r B

v A v B = r A r B

Hence, speed of the particle is directly proportional to square root of the radius of the circular path.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask