<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to gravitational field. The questions are categorized in terms of the characterizing features of the subject matter :

  • Potential
  • Gravitational field
  • Potential energy
  • Conservation of mechanical energy

Potential

Problem 1 : A particle of mass “m” is placed at the center of a uniform spherical shell of equal mass and radius “R”. Find the potential at a distance “R/4” from the center.

Solution : The potential at the point is algebraic sum of potential due to point mass at the center and spherical shell. Hence,

V = - G m R 4 G m R

V = - 5 G m R

Problem 2 : The gravitational field due to a mass distribution is given by the relation,

E = A x 2

Find gravitational potential at “x”.

Solution : Gravitational field is equal to negative of first differential with respect to displacement in a given direction.

E = - V x

Substituting the given expression for “E”, we have :

A x 2 = - V x

V = A x x 2

Integrating between initial and final values of infinity and “x”,

Δ V = V f V i = - A x x 2

We know that potential at infinity is zero gravitational potential reference. Hence, V i = 0. Let V f = V, then:

V = - A [ - 1 / x ] x = - A [ - 1 x + 0 ] = A x

Gravitational field

Problem 3 : A small hole is created on the surface of a spherical shell of mass, “M” and radius “R”. A particle of small mass “m” is released a bit inside at the mouth of the shell. Describe the motion of particle, considering that this set up is in a region free of any other gravitational force.

Gravitational force

A particle of small mass “m” is released at the mouth of hole.

Solution : The gravitational potential of a shell at any point inside the shell or on the surface of shell is constant and it is given by :

V = - G M R

The gravitational field,”E”, is :

E = - V r

As all quantities in the expression of potential is constant, its differentiation with displacement is zero. Hence, gravitational field is zero inside the shell :

E = 0

It means that there is no gravitational force on the particle. As such, it will stay where it was released.

Potential energy

Problem 4 : A ring of mass “M” and radius “R” is formed with non-uniform mass distribution. Find the minimum work by an external force to bring a particle of mass “m” from infinity to the center of ring.

Solution : The work done in carrying a particle slowly from infinity to a point in gravitational field is equal to potential energy of the “ring-particle” system. Now, Potential energy of the system is :

W F = U = m V

The potential due to ring at its center is independent of mass-distribution. Recall that gravitational potential being a scalar quantity are added algebraically for individual elemental mass. It is given by :

V = - G M r

Hence, required work done,

W F = U = - G M m r

The negative work means that external force and displacement are opposite to each other. Actually, such is the case as the particle is attracted into gravitational field, external force is applied so that particle does not acquire kinetic energy.

Conservation of mechanical energy

Problem 5 : Imagine that a hole is drilled straight through the center of Earth of mass “M” and radius “R”. Find the speed of particle of mass dropped in the hole, when it reaches the center of Earth.

Solution : Here, we apply conservation of mechanical energy to find the required speed. The initial kinetic energy of the particle is zero.

K i = 0

On the other hand, the potential energy of the particle at the surface is :

U i = m V i = G M m R

Let “v” be the speed of the particle at the center of Earth. Its kinetic energy is :

K f = 1 2 m v 2

The potential energy of the particle at center of Earth is :

U f = m V f = - 3 G M m 2 R

Applying conservation of mechanical energy,

K i + U i = K f + U f

0 G M m R = 1 2 m v 2 - 3 G M m 2 R

v = G M R

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask