<< Chapter < Page Chapter >> Page >
Gravitational potential is scalar description of gravitational field.

Description of force having “action at a distance” is best described in terms of force field. The “per unit” measurement is central idea of a force field. The field strength of a gravitational field is the measure of gravitational force experienced by unit mass. On a similar footing, we can associate energy with the force field. We shall define a quantity of energy that is associated with the position of unit mass in the gravitational field. This quantity is called gravitational potential (V) and is different to potential energy as we have studied earlier. Gravitational potential energy (U) is the potential energy associated with any mass - as against unit mass in the gravitational field.

Two quantities (potential and potential energy) are though different, but are closely related. From the perspective of force field, the gravitational potential energy (U) is the energy associated with the position of a given mass in the gravitational field. Clearly, two quantities are related to each other by the equation,

U = m V

The unit of gravitational potential is Joule/kg.

There is a striking parallel among various techniques that we have so far used to study force and motion. One of the techniques employs vector analysis, whereas the other technique employs scalar analysis. In general, we study motion in terms of force (vector context), using Newton’s laws of motion or in terms of energy employing “work-kinetic energy” theorem or conservation law (scalar context).

In the study of conservative force like gravitation also, we can study gravitational interactions in terms of either force (Newton’s law of gravitation) or energy (gravitational potential energy). It follows, then, that study of conservative force in terms of “force field” should also have two perspectives, namely that of force and energy. Field strength presents the perspective of force (vector character of the field), whereas gravitational potential presents the perspective of energy (scalar character of field).

Gravitational potential

The definition of gravitational potential energy is extended to unit mass to define gravitational potential.

Gravitational potential
The gravitational potential at a point is equal to “negative” of the work by the gravitational force as a particle of unit mass is brought from infinity to its position in the gravitational field.

Or

Gravitational potential
The gravitational potential at a point is equal to the work by the external force as a particle of unit mass is brought from infinity to its position in the gravitational field.

Mathematically,

V = - W G = - r F G r m = - r E r

Here, we can consider gravitational field strength, “E” in place of gravitational force, “ F G ” to account for the fact we are calculating work per unit mass.

Change in gravitational potential in a field due to point mass

The change in gravitational potential energy is equal to the negative of work by gravitational force as a particle is brought from one point to another in a gravitational field. Mathematically,

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask