<< Chapter < Page Chapter >> Page >

E = G M 4 a r 2 [ y + a 2 r 2 y ] r a r + a

E = G M 4 a r 2 [ r + a + a 2 r 2 r + a r + a a 2 r 2 r a ]

E = G M 4 a r 2 [ 2 a + a 2 r 2 1 r + a 1 r a ]

E = G M 4 a r 2 X 4 a

E = G M r 2

This is an important result. We have been using this result by the name of Newton’s shell theory. According to this theory, a spherical shell, for a particle outside it, behaves as if all its mass is concentrated at its center. This is how we could calculate gravitational attraction between Earth and an apple. Note that radius of the shell, “a”, does not come into picture.

Case 2 : The point “P” lies outside the shell. The total gravitational field is obtained by integrating the integral from x = a-r to x = a+r,

E = G M 4 a r 2 [ y + a 2 r 2 y ] a r a + r

E = G M 4 a r 2 [ a + r + a 2 r 2 a + r a + r a 2 r 2 a r ]

E = G M 4 a r 2 [ 2 r + a 2 r 2 1 a + r 1 a r ]

E = G M 4 a r 2 [ 2 r 2 r ] = 0

This is yet another important result, which has been used to determine gravitational acceleration below the surface of Earth. The mass residing outside the sphere drawn to include the point below Earth’s surface, does not contribute to gravitational force at that point.

The mass outside the sphere is considered to be composed of infinite numbers of thin shells. The point within the Earth lies inside these larger shells. As gravitational intensity is zero within a shell, the outer shells do not contribute to the gravitational force on the particle at that point.

A plot, showing the gravitational field strength, is shown here for regions both inside and outside spherical shell :

Gravitational field due to thin spherical shell

The gravitational field along linear distance from center.

Gravitational field due to uniform solid sphere

The uniform solid sphere of radius “a” and mass “M” can be considered to be composed of infinite numbers of thin spherical shells. We consider one such spherical shell of infinitesimally small thickness “dx” as shown in the figure. The gravitational field strength due to thin spherical shell at a point outside shell, which is at a linear distance “r” from the center, is given by

Gravitational field due to solid sphere

The gravitational field at a distance "r" from the center of sphere.

E = G m r 2

The gravitational field strength acts along the line towards the center of sphere. As such, we can add gravitational field strengths of individual shells to obtain the field strength of the sphere. In this case, most striking point is that the centers of all spherical shells are coincident at one point. This means that linear distance between centers of spherical shell and the point ob observation is same for all shells. In turn, we can conclude that the term “ r 2 ” is constant for all spherical shells and as such can be taken out of the integral,

E = G m r 2 = G r 2 m = G M r 2

We can see here that a uniform solid sphere behaves similar to a shell. For a point outside, it behaves as if all its mass is concentrated at its center. Note that radius of the sphere, “a”, does not come into picture. Sphere behaves as a point mass for a point outside.

Gravitational field at an inside point

We have already derived this relation in the case of Earth.

For this reason, we will not derive this relation here. Nevertheless, it would be intuitive to interpret the result obtained for the acceleration (field strength) earlier,

Gravitational field inside solid sphere

The gravitational field at a distance "r" from the center of sphere.

g = g 0 ( 1 - d R )

Putting value of “g0” and simplifying,

g = G M R 2 1 - d R = G M R 2 R - d R = G M r R 3

As we have considered “a” as the radius of sphere here – not “R” as in the case of Earth, we have the general expression for the field strength insider a uniform solid sphere as :

E = G M r a 3

The field strength of uniform solid sphere within it decreases linearly within “r” and becomes zero as we reach at the center of the sphere. A plot, showing the gravitational field strength, is shown here for regions both inside and outside :

Gravitational field due to uniform solid sphere

The gravitational field along linear distance from center.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask