<< Chapter < Page Chapter >> Page >
Kepler’s laws of planetary motion are consistent with Newtonian mechanics.

The trajectory of motion resulting from general solution of “two body” system is a conic section. Subject to initial velocities and relative mass, eccentricity of conic section can have different values. We interpret a conic section for different eccentricity to represent different types of trajectories. We have already discussed straight line and circular trajectories. In this module, we shall discuss elliptical trajectory, which is the trajectory of a planet in the solar system.

In a general scenario of “two body system”, involving elliptical trajectory, each body revolves around the common “center of mass” called “barycenter”. The two elliptical paths intersect, but bodies are not at the point of intersection at the same time and as such there is no collision.

Two body system

Elliptical trajectories

In this module, however, we shall keep our focus on the planetary motion and Kepler’s planetary laws. We are basically seeking to describe planetary motion – particularly that in our solar system. The trajectory of planet is elliptical with one qualification. The Sun, being many times heavier than the planets, is almost at rest in the reference frame of motion. It lies at one of the foci of the elliptical path of the planets around it. Here, we assume that center of mass is about same as the center of Sun. Clearly, planetary motion is a special case of elliptical motion of “two body system” interacted by mutual attraction.

We should, however, be aware that general solution of planetary motion involves second order differential equation, which is solved using polar coordinates.

Ellipse

We need to learn about the basics of elliptical trajectory and terminology associated with it. It is important from the point of view of applying laws of Newtonian mechanics. We shall, however, be limited to the basics only.

Conic section

Conic section is obtained by the intersection of a plane with a cone. Two such intersections, one for a circle and one for an ellipse are shown in the figure.

Conic sections

Two conic sections representing a circle and an ellipse are shown.

Elliptical trajectory

Here, we recount the elementary geometry of an ellipse in order to understand planetary motion. The equation of an ellipse centered at the origin of a rectangular coordinate (0,0) is :

x 2 a 2 + y 2 b 2 = 1

where “a” is semi-major axis and “b” is semi-minor axis as shown in the figure.

Ellipse

Semi major and minor axes of an ellipse

Note that “ F 1 ” and “ F 2 ” are two foci of the ellipse.

Eccentricity

The eccentricity of a conic section is measure of “how different it is from a circle”. Higher the eccentricity, greater is deviation. The eccentricity (e) of a conic section is defined in terms of “a” and “b” as :

e = 1 k b 2 a 2

where “k” is 1 for an ellipse, 0 for parabola and -1 for hyperbola. The values of eccentricity for different trajectories are as give here :

  1. The eccentricity of a straight line is 1, if we consider b=0 for the straight line.
  2. The eccentricity of an ellipse falls between 0 and 1.
  3. The eccentricity of a circle is 0
  4. The eccentricity of a parabola is 1.
  5. The eccentricity of a hyperbola is greater than 1.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask