<< Chapter < Page Chapter >> Page >

During upward motion, velocity and acceleration due to gravity are in opposite direction. As a result, velocity decreases till it achieves the terminal velocity of zero at the end of 3rd second. Note that displacement during the motion is increasing till the ball reaches the maximum height.

At the maximum height, the velocity of the ball is zero and is under the action of force due to gravity as always during the motion. As such, the ball begins moving in downward direction with the acceleration due to gravity. The directions of velocity and acceleration, in this part of motion, are same. Note that displacement with respect to point of projection is decreasing.

In the overall analysis of motion when initial velocity is against acceleration, parameters defining motion i.e initial velocity, final velocity and acceleration act along a straight line, but in different directions. As a consequence, displacement may either be increasing or decreasing during the motion. This means that magnitude of displacement may not be equal to distance. For example, consider the motion of ball from the point of projection, A, to maximum height, B, to point, C, at the end of 4 seconds. The displacement is 40 m, while distance is 45 + 5 = 50 m as shown in the figure below.

Attributes of motion

For this reason, average speed is not always equal to the magnitude of average velocity.

s | x |

and

Δ s Δ t | Δ x Δ t |

Exercises

Two cyclists start off a race with initial velocities 2 m/s and 4 m/s respectively. Their linear accelerations are 2 and 1 m / s 2 respectively. If they reach the finish line simultaneously, then what is the length of the track?

This is a case of one dimensional motion with constant acceleration. Since both cyclists cross the finish line simultaneously, they cover same displacement in equal times. Hence,

x 1 = x 2

u 1 t + 1 2 a 1 t 2 = u 2 t + 1 2 a 2 t 2

Putting values as given in the question, we have :

2 t + 1 2 x 2 x t 2 = 4 t + 1 2 x 1 x t 2 t 2 - 4 t = 0 t = 0 s , 4 s

Neglecting zero value,

t = 4 s

The linear distance covered by the cyclist is obtained by evaluating the equation of displacement of any of the cyclists as :

x = 2 t + 1 2 x 2 x t 2 = 2 x 4 + 1 2 x 2 x 4 2 = 24 t

Got questions? Get instant answers now!

Two cars are flagged off from the starting point. They move with accelerations a 1 and a 2 respectively. The car “A” takes time “t” less than car “B” to reach the end point and passes the end point with a difference of speed, “v”, with respect to car “B”. Find the ratio v/t.

Both cars start from rest. They move with different accelerations and hence take different times to reach equal distance, say t 1 and t 2 for cars A and B respectively. Their final speeds at the end points are also different, say v 1 and v 2 for cars A and B respectively. According to the question, the difference of time is “t”, whereas difference of speeds is “v”.

As car A is faster, it takes lesser time. Here, t 2 > t 1 . The difference of time, “t”, is :

t = t 2 - t 1

From equation of motion,

x = 1 2 a 1 t 1 2 t 1 = ( 2 x a 1 )

Similarly,

t 2 = ( 2 x a 2 )

Hence,

t = t 2 - t 1 = ( 2 x a 2 ) - ( 2 x a 1 )

Car A is faster. Hence, v 1 > v 2 . The difference of time, “v”, is :

v = v 1 - v 2

From equation of motion,

v 1 2 = 2 a 1 x v 1 = ( 2 a 1 x )

Similarly,

v 2 = ( 2 a 2 x )

Hence,

v = v 1 - v 2 = ( 2 a 1 x ) - ( 2 a 2 x )

The required ratio, therefore, is :

v t = ( 2 a 1 x ) - ( 2 a 2 x ) ( 2 x a 2 ) - ( 2 x a 1 ) = { ( 2 a 1 ) - ( 2 a 2 ) } a 1 a 2 { ( 2 a 1 ) - ( 2 a 2 ) }

v t = ( a 1 a 2 )

Got questions? Get instant answers now!

Two particles start to move from same position. One moves with constant linear velocity, “v”; whereas the other, starting from rest, moves with constant acceleration, “a”. Before the second catches up with the first, what is maximum separation between two?.

One of the particles begins with a constant velocity, “v” and continues to move with that velocity. The second particle starts with zero velocity and continues to move with a constant acceleration, “a”. At a given instant, “t”, the first covers a linear distance,

x 1 = v t

In this period, the second particle travels a linear distance given by :

x 2 = 1 2 a t 2

First particle starts with certain velocity as against second one, which is at rest. It means that the first particle will be ahead of second particle in the beginning. The separation between two particles is :

Δ x = x 1 - x 2 Δ x = v t - 1 2 a t 2

For the separation to be maximum, its first time derivative should be equal to zero and second time derivative should be negative. Now, first and second time derivatives are :

đ ( Δ x ) đ t = v - a t đ 2 ( Δ x ) đ t 2 = - a < 0

For maximum separation,

đ ( Δ x ) đ t = v - a t = 0

t = v a

The separation at this time instant,

Δ x = v t - 1 2 a t 2 = v x v a - 1 2 a ( v a ) 2 Δ x = v 2 2 a

Got questions? Get instant answers now!

Questions & Answers

how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
what is energy?
James Reply
can anyone tell who founded equations of motion !?
Ztechy Reply
n=a+b/T² find the linear express
Donsmart Reply
Quiklyyy
Sultan Reply
Moment of inertia of a bar in terms of perpendicular axis theorem
Sultan Reply
How should i know when to add/subtract the velocities and when to use the Pythagoras theorem?
Yara Reply
Centre of mass of two uniform rods of same length but made of different materials and kept at L-shape meeting point is origin of coordinate
Rama Reply
A balloon is released from the ground which rises vertically up with acceleration 1.4m/sec^2.a ball is released from the balloon 20 second after the balloon has left the ground. The maximum height reached by the ball from the ground is
Lucky Reply
work done by frictional force formula
Sudeer Reply
Torque
Misthu Reply
Why are we takingspherical surface area in case of solid sphere
Saswat Reply
In all situatuons, what can I generalize?
Cart Reply
the body travels the distance of d=( 14+- 0.2)m in t=( 4.0 +- 0.3) s calculate it's velocity with error limit find Percentage error
Clinton Reply
Explain it ?Fy=?sN?mg=0?N=mg?s
Admire Reply

Get the best Physics for k-12 course in your pocket!





Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask