<< Chapter < Page Chapter >> Page >

r 1 = 0 Δ r = r 2 - r 1 = r 2 = r ( say )

In this case, both final position vector and displacement are equal. This simplification, therefore, allows us to represent both displacement and position with a single vector variable r .

Graphical interpretation of equations of motion

The three basic equations of motion with constant acceleration, as derived above, are :

1: v = u + a t 2: v avg = ( u + v ) 2 3: s = Δ r = r 2 - r 1 = u t + 1 2 a t 2

These three equations completely describe motion of a point like mass, moving with constant acceleration. We need exactly five parameters to describe the motion under constant acceleration : u , v , r 1 , r 2 and t .

It can be emphasized here that we can not use these equations if the acceleration is not constant. We should use basic differentiation or integration techniques for motion having variable acceleration (non-uniform acceleration). These equations serve to be a ready to use equations that avoids differentiation and integration. Further, it is evident that equations of motion are vector equations, involving vector addition. We can evaluate a motion under constant acceleration, using either graphical or algebraic method based on components.

Here, we interpret these vector equations, using graphical technique. For illustration purpose, we apply these equations to a motion of an object, which is thrown at an angle θ from the horizontal. The magnitude of acceleration is "g", which is directed vertically downward. Let acceleration vector be represented by corresponding bold faced symbol g . Let v 1 and v 2 be the velocities at time instants t 1 and t 2 respectively and corresponding position vectors are r 1 and r 2 .

The final velocity at time instant t 2 , is given by :

v = u + a t v 2 = v 1 + g ( t 2 - t 1 )

Graphically, the final velocity is obtained by modifying initial vector v 1 by the vector g ( t 2 - t 1 ) .

Graphical representation of first equation

Now, we discuss graphical representation of second equation of motion. The average velocity between two time instants or two positions is given by :

v avg = ( u + v ) 2 v avg = ( v 1 + v 2 ) 2

The vector addition involved in the equation is graphically represented as shown in the figure. Note that average velocity is equal to half of the vector sum v 1 + v 2 .

Graphical representation of second equation

Third equation of motion provides for displacement in terms of two vector quantities - initial velocity and acceleration. The displacement, s , is equal to addition of two vector terms :

s = Δ r = r 2 - r 1 = u t + 1 2 a t 2 s = Δ r = r 2 - r 1 = v 1 ( t 2 - t 1 ) + 1 2 g ( t 2 - t 1 ) 2

Graphical representation of third equation

Equations of motion in component form

The application of equations of motion graphically is tedious. In general, we use component representation that allows us to apply equations algebraically. We use equations of motion, using component forms of vector quantities involved in the equations of motion. The component form of the various vector quantities are :

r = x i + y j + z k Δ r = Δ x i + Δ y j + Δ z k u = u x i + u y j + u z k v = v x i + v y j + v z k v = v avgx i + v avgy j + v avgz k a = a x i + a y j + a z k

Using above relations, equations of motion are :

1: v x i + v y j + v z k = ( u x i + u y j + u z k ) + ( a x i + a y j + a z k ) t 2: v avgx i + v avgy j + v avgz k = ( u x i + u y j + u z k ) + ( v x i + v y j + v z k ) 2 3: Δ x i + Δ y j + Δ z k = ( u x i + u y j + u z k ) t + 1 2 ( a x i + a y j + a z k ) t 2

Acceleration in component form

Problem : A particle is moving with an initial velocity ( 8 i + 2 j ) m / s , having an acceleration ( 0.4 i + 0.3 j ) m / s 2 . Calculate its speed after 10 seconds.

Solution : The particle has acceleration of ( 0.4 i + 0.3 j ) m / s 2 , which is a constant acceleration. Its magnitude is ( 0.4 2 + 0.3 2 ) = 0.5 m / s 2 making an angle with x-direction. θ = tan -1 ( 3 4 ) . Time interval is 10 seconds. Thus, applying equation of motion, we have :

v x i + v y j + v z k = ( u x i + u y j + u z k ) + ( a x i + a y j + a z k ) t v = ( 8 i + 2 j ) + ( 0.4 i + 0.3 j ) x 10 = 12 i + 5 j

Speed i.e. magnitude of velocity is :

v = ( 12 2 + 5 2 ) = 13 m / s

This example illustrates the basic nature of the equations of motion. If we treat them as scalar equations, we may be led to wrong answers. For example, magnitude of initial velocity i.e. speed is ( 8 2 + 2 2 ) = 8.25 m / s , Whereas magnitude of acceleration is ( 0.4 2 + 0.3 2 ) = 0.5 m / s 2 . Now, using equation of motion as scalar equation, we have : v = u + a t = 8.25 + 0.5 x 10 = 13.25 m / s

Got questions? Get instant answers now!

Equivalent scalar system of equations of motion

We have discussed earlier that a vector quantity in one dimension can be conveniently expressed in terms of an equivalent system of scalar representation. The advantage of linear motion is that we can completely do away with vector notation with an appropriate scheme of assigning plus or minus signs to the quantities involved. The equivalent scalar representation takes advantage of the fact that vectors involved in linear motion has only two possible directions. The one in the direction of chosen axis is considered positive and the other against the direction of the chosen axis is considered negative.

At the same time, the concept of component allows us to treat a motion into an equivalent system of the three rectilinear motions in the mutually perpendicular directions along the axes. The two concepts, when combined together, renders it possible to treat equations of motion in scalar terms in mutually three perpendicular directions.

Once we follow the rules of equivalent scalar representation, we can treat equations of motion as scalar equations in the direction of an axis, say x - axis, as :

1x: v x = u x + a x t 2x: v avgx = ( u x + v x ) 2 = ( x 2 - x 1 ) t 3x: Δ x = x 2 - x 1 = u x t + 1 2 a x t 2

We have similar set of equations in the remaining two directions. We can obtain the composite interpretation of the motion by combing the individual result in each direction. In order to grasp the method, we rework the earlier example.

Acceleration in scalar form

Problem : A particle is moving with an initial velocity ( 8 i + 2 j ) m / s , having an acceleration ( 0.4 i + 0.3 j ) m / s 2 . Calculate its speed after 10 seconds.

Solution : The motion in x – direction :

u x = 8 m / s ; a x = 0.4 m / s 2 ; 10 s and, v x = u x + a x t v x = 8 + 0.4 x 10 = 12 m / s

The motion in y – direction :

u y = 2 m / s ; a y = 0.3 m / s 2 ; 10 s and, v y = u y + a y t v y = 2 + 0.3 x 10 = 5 m / s

Therefore, the velocity is :

v = 2 i + 5 j v = ( 12 2 + 5 2 ) = 13 m / s 2

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask