<< Chapter < Page Chapter >> Page >

The important fall out of a constant acceleration is that its magnitude has a constant value and its direction is fixed. A change in either of the two attributes, constituting acceleration, shall render acceleration variable. This means that acceleration is along a straight line. But does this linear nature of acceleration mean that the associated motion is also linear? Answer is no.

Reason is again the “disconnect” between acceleration and velocity. We know that magnitude and direction of acceleration are solely determined by the mass of the object and net external force applied on it. Thus, a constant acceleration only indicates that the force i.e the cause that induces change in motion is linear. It does not impose any restriction on velocity to be linear.

Velocity and acceleration

Force and velocity are in two different directions

It is imperative that if the initial velocity of the object is not aligned with linear constant acceleration like in the figure above, then the immediate effect of the applied force, causing acceleration, is to change the velocity. Since acceleration is defined as the time rate of change in velocity, the resulting velocity would be so directed and its magnitude so moderated that the change in velocity (not the resulting velocity itself) is aligned in the direction of force.

Change in velocity

The change in velocity has the same direction as that of acceleration.

As the resulting velocity may not be aligned with the direction of force (acceleration), the resulting motion may not be linear either. For motion being linear, it is essential that the initial velocity and the force applied (and the resulting acceleration) are aligned along a straight line.

Examples of motions in more than one dimension with constant acceleration abound in nature. We have already seen that motion of a projectile in vertical plane has constant acceleration due to gravity, having constant magnitude, g, and fixed downward direction. If we neglect air resistance, we can assume that all non- propelled projectile motions above ground are accelerated with constant acceleration. In the nutshell, we can say that constant acceleration is unidirectional and linear, but the resulting velocity may not be linear. Let us apply this understanding to the motion of a projectile, which is essentially a motion under constant acceleration due to gravity.

Parabolic motion

The velocity of the ball is moderated by acceleration.

In the figure, see qualitatively, how the initial velocity vector, v, is modified by the constant acceleration vector, g, at the end of successive seconds. Note that combined change in both magnitude and direction of the velocity is taking place at a constant rate and is in vertically downward direction.

In the context of constant acceleration, we must also emphasize that both magnitude and direction are constant. A constant acceleration in magnitude only is not sufficient. For constant acceleration, the direction of acceleration should also be same (i.e constant). We can have a look at a uniform circular motion in horizontal plane, which follows a horizontal circular path with a constant speed.

Questions & Answers

what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
n=a+b/T² find the linear express
Donsmart Reply
Quiklyyy
Sultan Reply
Moment of inertia of a bar in terms of perpendicular axis theorem
Sultan Reply
How should i know when to add/subtract the velocities and when to use the Pythagoras theorem?
Yara Reply
Centre of mass of two uniform rods of same length but made of different materials and kept at L-shape meeting point is origin of coordinate
Rama Reply
A balloon is released from the ground which rises vertically up with acceleration 1.4m/sec^2.a ball is released from the balloon 20 second after the balloon has left the ground. The maximum height reached by the ball from the ground is
Lucky Reply
work done by frictional force formula
Sudeer Reply
Torque
Misthu Reply
Why are we takingspherical surface area in case of solid sphere
Saswat Reply
In all situatuons, what can I generalize?
Cart Reply
the body travels the distance of d=( 14+- 0.2)m in t=( 4.0 +- 0.3) s calculate it's velocity with error limit find Percentage error
Clinton Reply
Explain it ?Fy=?sN?mg=0?N=mg?s
Admire Reply

Get the best Physics for k-12 course in your pocket!





Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask