<< Chapter < Page Chapter >> Page >

Potential energy
The potential energy of a system of particles is equal to the work by the external force as a particle is brought from infinity slowly to its position in the presence of other particles of the system.

The context of work in defining potential energy is always confusing. There is, however, few distinguishing aspects that we should keep in mind to be correct. If we define potential energy in terms of conservative force, then potential energy is equal to “negative” of work by conservative force. If we define potential energy in terms of external force, then potential energy is simply equal to work by external force, which does not impart kinetic energy to the particle.

Potential energy and conservative force

Potential energy is unique in yet another important respect. Unlike other forms of energy, potential energy is directly related to conservative force. We shall establish this relation here. We know that a change in potential energy is equal to the negative of work by gravity,

Δ U = F C Δ r

For infinitesimal change, we can write the equation as,

U = F c r

F C = U r

Thus, if we know potential energy function, we can find corresponding conservative force at a given position. Further, we can see here that force – a vector – is related to potential energy (scalar) and position in scalar form. We need to resolve this so that evaluation of the differentiation on the right yields the desired vector force.

As a matter of fact, we handle this situation in a very unique way. Here, the differentiation in itself yields a vector. In three dimensions, we define an operator called “grad” as :

grad = x i + y j + z k

where " x " is partial differentiation operator. This is same like normal differentiation except that it considers other dimensions (y,z) constant. In terms of “grad”,

F = grad U

The example given here illustrates the operation of “grad”.

Example

Problem 1: Gravitational potential energy in a region is given by :

U x , y , z = - x 2 y + y z 2

Find gravitational force function.

Solution : We can obtain gravitational force in each of three mutually perpendicular directions of a rectangular coordinate system by differentiating given potential function with respect to coordinate in that direction. While differentiating with respect to a given coordinate, we consider other coordinates as constant. This type of differentiation is known as partial differentiation.

Thus,

F x = x = x - x 2 y + y z 2 = 2 x y

F y = y = y - x 2 y + y z 2 = x 2 + y 2

F z = z = z - x 2 y + y z 2 = 2 y z

Hence, required gravitational force is given as :

F = - grad U

F = x i + y j + z k U

F = = 2 x y i + x 2 + y 2 j + 2 y z k

This example illustrates how a scalar quantity (potential energy) is related to a vector quantity (force). In order to implement partial differentiation by a single operator, we define a differential vector operator “grad” a short name for “gradient” as above. For this reason, we say that conservative force is equal to gradient of potential energy.

Potential energy values

Evaluation of the integral of potential energy is positive or negative, depending on the nature of work by conservative force.

U = W C = 0 F C r

The nature of work by the conservative force, on the other hand, depends on whether force is attractive or repulsive. The work by attractive force like gravitation and electrostatic force between negative and positive charges do “positive” work. In these cases, component of force and displacement are in the same direction as the particle is brought from infinity. However, as a negative sign precedes the right hand expression, potential energy of the system operated by attractive force is ultimately negative.

It means that potential energy for these conservative forces would be always a negative value. The important thing is to realize that maximum potential energy of such system is “zero” ay infinity.

On the other hand, potential energy of a system interacted by repulsive force is positive. Its minimum value is “zero” at infinity.

We shall not work with numerical examples or illustrate working of different contexts presented in this module. The discussion, here, is limited to general theoretical development of the concept of potential energy for any conservative force. We shall work with appropriate examples in the specific contexts (gravitation, electrostatic force etc.) in separate modules.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask