<< Chapter < Page Chapter >> Page >

Solution

First consider the horizontal or x -axis:

F net x = T 2 x T 1 x = 0 size 12{F rSub { size 8{"net x"} } =T rSub { size 8{"2x"} } - T rSub { size 8{"1x"} } =0} {} .

Thus, as you might expect,

T 1 x = T 2 x size 12{T rSub { size 8{"1x"} } = T rSub { size 8{"2x"} } } {} .

This gives us the following relationship between T 1 size 12{T rSub { size 8{1} } } {} and T 2 size 12{T rSub { size 8{2} } } {} :

T 1 cos ( 30º ) = T 2 cos ( 45º ) size 12{T rSub { size 8{1} } "cos" \( "30"° \) =T rSub { size 8{2} } "cos" \( "45"° \) } {} .

Thus,

T 2 = ( 1 . 225 ) T 1 size 12{T rSub { size 8{2} } = \( 1 "." "225" \) T rSub { size 8{1} } } {} .

Note that T 1 size 12{T rSub { size 8{1} } } {} and T 2 size 12{T rSub { size 8{2} } } {} are not equal in this case, because the angles on either side are not equal. It is reasonable that T 2 size 12{T rSub { size 8{2} } } {} ends up being greater than T 1 size 12{T rSub { size 8{1} } } {} , because it is exerted more vertically than T 1 size 12{T rSub { size 8{1} } } {} .

Now consider the force components along the vertical or y -axis:

F net y = T 1 y + T 2 y w = 0 size 12{F rSub { size 8{"net y"} } =T rSub { size 8{"1y"} } +T rSub { size 8{"2y"} } - w=0} {} .

This implies

T 1 y + T 2 y = w size 12{T rSub { size 8{"1y"} } +T rSub { size 8{"2y"} } =w} {} .

Substituting the expressions for the vertical components gives

T 1 sin ( 30º ) + T 2 sin ( 45º ) = w size 12{T rSub { size 8{1} } "sin" \( "30"° \) + T rSub { size 8{2} } "sin" \( "45"° \) =w} {} .

There are two unknowns in this equation, but substituting the expression for T 2 size 12{T rSub { size 8{2} } } {} in terms of T 1 size 12{T rSub { size 8{1} } } {} reduces this to one equation with one unknown:

T 1 ( 0 . 500 ) + ( 1 . 225 T 1 ) ( 0 . 707 ) = w = mg size 12{T rSub { size 8{1} } \( 0 "." "500" \) + \( 1 "." "225"T rSub { size 8{1} } \) \( 0 "." "707" \) =w= ital "mg"} {} ,

which yields

1 . 366 T 1 = ( 15 . 0 kg ) ( 9 . 80 m/s 2 ) size 12{ left (1 "." "366" right )T rSub { size 8{1} } = \( "15" "." "0 kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) } {} .

Solving this last equation gives the magnitude of T 1 size 12{T rSub { size 8{1} } } {} to be

T 1 = 108 N size 12{T rSub { size 8{1} } ="108"" N"} {} .

Finally, the magnitude of T 2 size 12{T rSub { size 8{2} } } {} is determined using the relationship between them, T 2 size 12{T rSub { size 8{1} } } {} = 1.225 T 1 size 12{T rSub { size 8{2} } } {} , found above. Thus we obtain

T 2 = 132 N size 12{T rSub { size 8{2} } ="132 N"} {} .

Discussion

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either side are the same (as they were in the earlier example of a tightrope walker).

The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a constant speed: will the scale still read more than your weight at rest? Consider the following example.

What does the bathroom scale read in an elevator?

[link] shows a 75.0-kg man (weight of about 165 lb) standing on a bathroom scale in an elevator. Calculate the scale reading: (a) if the elevator accelerates upward at a rate of 1 . 20 m/s 2 size 12{1 "." "20 m/s" rSup { size 8{2} } } {} , and (b) if the elevator moves upward at a constant speed of 1 m/s.

A person is standing on a bathroom scale in an elevator. His weight w is shown by an arrow pointing downward. F sub s is the force of the scale on the person, shown by a vector starting from his feet pointing vertically upward. W sub s is the weight of the scale pointing vertically downward. W sub e is the weight of the elevator, shown by the broken arrow pointing vertically downward. F sub p is the force of the person on the scale, acting vertically downward. F sub t is the force of the scale on the floor of the elevator, pointing vertically downward, and N is the normal force of the floor on the scale, pointing upward. (b) The same person is shown on the scale in the elevator, but only a few forces are shown acting on the person, which is our system of interest. W is shown by an arrow acting downward, and F sub s is the force of the scale on the person, shown by a vector starting from his feet pointing vertically upward. The free-body diagram is also shown, with two forces acting on a point. F sub s acts vertically upward, and w acts vertically downward.
(a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are approximately correct for when the elevator is accelerating upward—broken arrows represent forces too large to be drawn to scale. T size 12{T} is the tension in the supporting cable, w size 12{w} is the weight of the person, w s size 12{w rSub { size 8{s} } } {} is the weight of the scale, w e size 12{w rSub { size 8{e} } } {} is the weight of the elevator, F s size 12{F rSub { size 8{s} } } {} is the force of the scale on the person, F p size 12{F rSub { size 8{p} } } {} is the force of the person on the scale, F t size 12{F rSub { size 8{t} } } {} is the force of the scale on the floor of the elevator, and N size 12{N} is the force of the floor upward on the scale. (b) The free-body diagram shows only the external forces acting on the designated system of interest—the person.

Strategy

If the scale is accurate, its reading will equal F p size 12{F rSub { size 8{p} } } {} , the magnitude of the force the person exerts downward on it. [link] (a) shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn as in [link] (b). Analysis of the free-body diagram using Newton’s laws can produce answers to both parts (a) and (b) of this example, as well as some other questions that might arise. The only forces acting on the person are his weight w size 12{w} {} and the upward force of the scale F s size 12{F rSub { size 8{s} } } {} . According to Newton’s third law F p size 12{F rSub { size 8{p} } } {} and F s size 12{F rSub { size 8{s} } } {} are equal in magnitude and opposite in direction, so that we need to find F s size 12{F rSub { size 8{s} } } {} in order to find what the scale reads. We can do this, as usual, by applying Newton’s second law,

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask