<< Chapter < Page Chapter >> Page >
Thermal expansion coefficients at 20 º C size 12{"20"°C} {} Values for liquids and gases are approximate.
Material Coefficient of linear expansion α ( 1 / º C ) size 12{α \( 1/°C \) } {} Coefficient of volume expansion β ( 1 / º C ) size 12{β \( 1/°C \) } {}
Solids
Aluminum 25 × 10 6 size 12{"25" times "10" rSup { size 8{–6} } } {} 75 × 10 6 size 12{"75"´"10" rSup { size 8{ +- 6} } } {}
Brass 19 × 10 6 size 12{"19" times "10" rSup { size 8{–6} } } {} 56 × 10 6 size 12{"56"´"10" rSup { size 8{ +- 6} } } {}
Copper 17 × 10 6 size 12{"17" times "10" rSup { size 8{–6} } } {} 51 × 10 6 size 12{"51" times "10" rSup { size 8{–6} } } {}
Gold 14 × 10 6 size 12{"14" times "10" rSup { size 8{–6} } } {} 42 × 10 6 size 12{"42" times "10" rSup { size 8{–6} } } {}
Iron or Steel 12 × 10 6 size 12{"12" times "10" rSup { size 8{–6} } } {} 35 × 10 6 size 12{"35" times "10" rSup { size 8{–6} } } {}
Invar (Nickel-iron alloy) 0 . 9 × 10 6 size 12{0 "." 9 times "10" rSup { size 8{–6} } } {} 2 . 7 × 10 6 size 12{2 "." 7 times "10" rSup { size 8{–6} } } {}
Lead 29 × 10 6 size 12{"29" times "10" rSup { size 8{–6} } } {} 87 × 10 6 size 12{"87" times "10" rSup { size 8{–6} } } {}
Silver 18 × 10 6 size 12{"18" times "10" rSup { size 8{–6} } } {} 54 × 10 6 size 12{"54" times "10" rSup { size 8{–6} } } {}
Glass (ordinary) 9 × 10 6 size 12{9 times "10" rSup { size 8{–6} } } {} 27 × 10 6 size 12{"27" times "10" rSup { size 8{–6} } } {}
Glass (Pyrex®) 3 × 10 6 size 12{3 times "10" rSup { size 8{–6} } } {} 9 × 10 6 size 12{9 times "10" rSup { size 8{–6} } } {}
Quartz 0 . 4 × 10 6 size 12{0 "." 4´"10" rSup { size 8{ +- 6} } } {} 1 × 10 6 size 12{1 times "10" rSup { size 8{–6} } } {}
Concrete, Brick ~ 12 × 10 6 size 12{ "~" "12"´"10" rSup { size 8{ +- 6} } } {} ~ 36 × 10 6 size 12{ "~" "36" times "10" rSup { size 8{–6} } } {}
Marble (average) 2 . 5 × 10 6 size 12{2 "." 5´"10" rSup { size 8{ +- 6} } } {} 7 . 5 × 10 6 size 12{7 "." 5 times "10" rSup { size 8{–6} } } {}
Liquids
Ether 1650 × 10 6 size 12{"1650" times "10" rSup { size 8{–6} } } {}
Ethyl alcohol 1100 × 10 6 size 12{"1100" times "10" rSup { size 8{–6} } } {}
Petrol 950 × 10 6 size 12{"950" times "10" rSup { size 8{–6} } } {}
Glycerin 500 × 10 6 size 12{"500" times "10" rSup { size 8{–6} } } {}
Mercury 180 × 10 6 size 12{"180" times "10" rSup { size 8{–6} } } {}
Water 210 × 10 6 size 12{"210" times "10" rSup { size 8{–6} } } {}
Gases
Air and most other gases at atmospheric pressure 3400 × 10 6 size 12{"3400" times "10" rSup { size 8{–6} } } {}

Calculating linear thermal expansion: the golden gate bridge

The main span of San Francisco’s Golden Gate Bridge is 1275 m long at its coldest. The bridge is exposed to temperatures ranging from 15 º C size 12{–"15"°C} {} to 40 º C size 12{"40"°C} {} . What is its change in length between these temperatures? Assume that the bridge is made entirely of steel.

Strategy

Use the equation for linear thermal expansion Δ L = αL Δ T size 12{ΔL=αL`ΔT} {} to calculate the change in length , Δ L size 12{ΔL} {} . Use the coefficient of linear expansion, α size 12{α} {} , for steel from [link] , and note that the change in temperature, Δ T size 12{ΔT} {} , is 55 º C size 12{"55"°C} {} .

Solution

Plug all of the known values into the equation to solve for Δ L size 12{ΔL} {} .

Δ L = αL Δ T = 12 × 10 6 º C 1275 m 55 º C = 0 . 84 m. size 12{ΔL=αLΔT= left ( { {"12" times "10" rSup { size 8{ - 6} } } over {°C} } right ) left ("1275 m" right ) left ("55"°C right )=0 "." "84 m"} {}

Discussion

Although not large compared with the length of the bridge, this change in length is observable. It is generally spread over many expansion joints so that the expansion at each joint is small.

Got questions? Get instant answers now!

Thermal expansion in two and three dimensions

Objects expand in all dimensions, as illustrated in [link] . That is, their areas and volumes, as well as their lengths, increase with temperature. Holes also get larger with temperature. If you cut a hole in a metal plate, the remaining material will expand exactly as it would if the plug was still in place. The plug would get bigger, and so the hole must get bigger too. (Think of the ring of neighboring atoms or molecules on the wall of the hole as pushing each other farther apart as temperature increases. Obviously, the ring of neighbors must get slightly larger, so the hole gets slightly larger).

Thermal expansion in two dimensions

For small temperature changes, the change in area Δ A size 12{ΔA} {} is given by

Δ A = 2 αA Δ T , size 12{ΔA=2αAΔT} {}

where Δ A size 12{ΔA} {} is the change in area A size 12{A} {} , Δ T size 12{ΔT} {} is the change in temperature, and α size 12{α} {} is the coefficient of linear expansion, which varies slightly with temperature.

Part a shows the outline of a flat metal plate before and after expansion. After expansion, it has the same shape and ratio of dimensions as before, but it takes up a greater area. Part b shows the outline of a flat metal plate with a hole in it, before and after expansion. The hole expands. Part c shows the outline of a rectangular box before and after expansion. After expansion, the box has the same proportions as before expansion, but it has a greater volume.
In general, objects expand in all directions as temperature increases. In these drawings, the original boundaries of the objects are shown with solid lines, and the expanded boundaries with dashed lines. (a) Area increases because both length and width increase. The area of a circular plug also increases. (b) If the plug is removed, the hole it leaves becomes larger with increasing temperature, just as if the expanding plug were still in place. (c) Volume also increases, because all three dimensions increase.

Thermal expansion in three dimensions

The change in volume Δ V size 12{ΔV} {} is very nearly Δ V = 3 α V Δ T size 12{ΔV=3αVΔT} {} . This equation is usually written as

Δ V = βV Δ T , size 12{ΔV=βVΔT} {}

where β size 12{β} {} is the coefficient of volume expansion    and β size 12{β approx 3α} {} . Note that the values of β size 12{β} {} in [link] are almost exactly equal to size 12{3α} {} .

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask