<< Chapter < Page Chapter >> Page >
Fundamental si units
Length Mass Time Electric Charge
meter (m) kilogram (kg) second (s) coulomb (c)

It is an intriguing fact that some physical quantities are more fundamental than others and that the most fundamental physical quantities can be defined only in terms of the procedure used to measure them. The units in which they are measured are thus called fundamental units    . In this textbook, the fundamental physical quantities are taken to be length, mass, time, and electric charge. (Note that electric current will not be introduced until much later in this text.) All other physical quantities, such as force and electric current, can be expressed as algebraic combinations of length, mass, time, and current (for example, speed is length divided by time); these units are called derived units    .

Units of time, length, and mass: the second, meter, and kilogram

The second

The SI unit for time, the second    (abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar day. More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a non-varying, or constant, physical phenomenon (because the solar day is getting longer due to very gradual slowing of the Earth's rotation). Cesium atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967 the second was redefined as the time required for 9,192,631,770 of these vibrations. (See [link] .) Accuracy in the fundamental units is essential, because all measurements are ultimately expressed in terms of fundamental units and can be no more accurate than are the fundamental units themselves.

A top view of an atomic fountain is shown. It measures time using the vibration of the cesium atom.
An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image is looking down from the top of an atomic fountain nearly 30 feet tall! (credit: Steve Jurvetson/Flickr)

The meter

The SI unit for length is the meter    (abbreviated m); its definition has also changed over time to become more accurate and precise. The meter was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was improved in 1889 by redefining the meter to be the distance between two engraved lines on a platinum-iridium bar now kept near Paris. By 1960, it had become possible to define the meter even more accurately in terms of the wavelength of light, so it was again redefined as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was given its present definition (partly for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second. (See [link] .) This change defines the speed of light to be exactly 299,792,458 meters per second. The length of the meter will change if the speed of light is someday measured with greater accuracy.

The kilogram

The SI unit for mass is the kilogram    (abbreviated kg); it is defined to be the mass of a platinum-iridium cylinder kept with the old meter standard at the International Bureau of Weights and Measures near Paris. Exact replicas of the standard kilogram are also kept at the United States' National Institute of Standards and Technology, or NIST, located in Gaithersburg, Maryland outside of Washington D.C., and at other locations around the world. The determination of all other masses can be ultimately traced to a comparison with the standard mass.

Questions & Answers

sound waves can be modeled as a change in pressure ,why is the change on in pressure used and not the actual pressure
Dotto Reply
what is the best
Kelly Reply
Water,air,fire
Maung
I am a university student of Myanmar.I am first year,first semester.I want to learn about physics.
Maung
two charges qA and qB are separated by a distance x. if we double the distance between the charges and triple the magnitude of the charge A, what happens to the magnitude of the force that charge A exerts on charge B. what happens to the magnitude of the force that charge B exerts on charge A
tanla Reply
how to get mcq and essay?
Owen Reply
what is force
Ibrahim Reply
force is a pull or push action on an object or a body.
joseph
what is a significant figure? and give example
Frederick
numerical chapter number 3
Sajid Reply
joined
Ibrahim
a reflected ray on a mirror makes an angle of 20degree with the incident ray when the mirror is rotated 15degree what angle will the incident ray now make with the reflected ray
Akinyemi Reply
what is simple harmonic motion
Solomon Reply
how vapour pressure of a liquid lost through convection
Yomzi Reply
Roofs are sometimes pushed off vertically during a tropical cyclone, and buildings sometimes explode outward when hit by a tornado. Use Bernoulli’s principle to explain these phenomena.
Aliraza Reply
Plz answer the question ☝️☝️
Aliraza
what's the basic si unit of acceleration
ELLOIN Reply
Explain why the change in velocity is different in the two frames, whereas the change in kinetic energy is the same in both.
Fabian Reply
Insulators (nonmetals) have a higher BE than metals, and it is more difficult for photons to eject electrons from insulators. Discuss how this relates to the free charges in metals that make them good conductors.
Muhammad Reply
Is the photoelectric effect a direct consequence of the wave character of EM radiation or of the particle character of EM radiation? Explain briefly.
Muhammad
Determine the total force and the absolute pressure on the bottom of a swimming pool 28.0m by 8.5m whose uniform depth is 1 .8m.
Henny Reply
how solve this problem?
Foday
P(pressure)=density ×depth×acceleration due to gravity Force =P×Area(28.0x8.5)
Fomukom
for the answer to complete, the units need specified why
muqaddas Reply
That's just how the AP grades. Otherwise, you could be talking about m/s when the answer requires m/s^2. They need to know what you are referring to.
Kyle

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask