<< Chapter < Page Chapter >> Page >
The figure shows a reference light wave passing through a hologram. An external eye sees the virtual image of a dinosaur created from the reflection of the real image of the dinosaur by the hologram.
A transmission hologram is one that produces real and virtual images when a laser of the same type as that which exposed the hologram is passed through it. Diffraction from various parts of the film produces the same interference pattern as the object that was used to expose it.

The hologram illustrated in [link] is a transmission hologram. Holograms that are viewed with reflected light, such as the white light holograms on credit cards, are reflection holograms and are more common. White light holograms often appear a little blurry with rainbow edges, because the diffraction patterns of various colors of light are at slightly different locations due to their different wavelengths. Further uses of holography include all types of 3-D information storage, such as of statues in museums and engineering studies of structures and 3-D images of human organs. Invented in the late 1940s by Dennis Gabor (1900–1970), who won the 1971 Nobel Prize in Physics for his work, holography became far more practical with the development of the laser. Since lasers produce coherent single-wavelength light, their interference patterns are more pronounced. The precision is so great that it is even possible to record numerous holograms on a single piece of film by just changing the angle of the film for each successive image. This is how the holograms that move as you walk by them are produced—a kind of lensless movie.

In a similar way, in the medical field, holograms have allowed complete 3-D holographic displays of objects from a stack of images. Storing these images for future use is relatively easy. With the use of an endoscope, high-resolution 3-D holographic images of internal organs and tissues can be made.

Test prep for ap courses

A sample of hydrogen gas confined to a tube is initially at room temperature. As the gas is heated, the observer notices that the gas begins to glow with a pale pink color. Careful study of the spectrum shows that the light spectrum is not continuous. Instead, the hydrogen gas is only emitting visible wavelength photons of four specific colors, which combine to form the overall color to the human eye. What is the best way to explain this behavior?

  1. As the gas heats up, atoms have more and more collisions and close approaches, so frictional heating causes the gas to glow.
  2. As the gas heats up, the electrons within the hydrogen atoms are excited to high energy levels. As the electrons transition to lower energies, they emit light of specific colors.
  3. As the gas heats up, more and more collisions occur, and the energy lost in these inelastic collisions is converted into light.
  4. As the gas heats up, the turbulence of the gas within the tube causes friction between the gas and the walls of the container, causing the gas to glow.

(b)

Got questions? Get instant answers now!

A rock is illuminated with high energy ultraviolet light. This causes the rock to emit visible light. Explain what is happening in the atomic substructure of the rock that causes this effect, which we call fluorescence.

Got questions? Get instant answers now!

Which of the following is the best way of explaining why the leaves on a given tree are green?

  1. The molecules in the leaves absorb all visible light but strongly reflect green light.
  2. The molecules in the leaves absorb green light and reflect other visible light.
  3. The molecules are excited by external light sources, and their electrons emit green light when they are de-excited to a lower energy level within the molecules.
  4. The molecules glow with a characteristic green energy in order to balance the absorption of energy due to light and heat from their surroundings.

(a)

Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask