<< Chapter < Page Chapter >> Page >

The relationships between the three common temperature scales is shown in [link] . Temperatures on these scales can be converted using the equations in [link] .

Temperature conversions
To convert from . . . Use this equation . . . Also written as . . .
Celsius to Fahrenheit T º F = 9 5 T º C + 32 size 12{T left (°F right )= { {9} over {5} } T left (°C right )+"32"} {} T º F = 9 5 T º C + 32 size 12{T rSub { size 8{°F} } = { {9} over {5} } T rSub { size 8{°C} } +"32"} {}
Fahrenheit to Celsius T º C = 5 9 T º F 32 size 12{T left (°C right )= { {5} over {9} } left [T left (°F right ) - "32" right ]} {} T º C = 5 9 T º F 32 size 12{T rSub { size 8{°C} } = { {5} over {9} } left (T rSub { size 8{°F} } - "32" right )} {}
Celsius to Kelvin T K = T º C + 273 . 15 size 12{T left (K right )=T left (°C right )+"273" "." "15"} {} T K = T º C + 273 . 15 size 12{T rSub { size 8{K} } =T rSub { size 8{°C} } +"273" "." "15"} {}
Kelvin to Celsius T º C = T K 273 . 15 size 12{T left (°C right )=T left (K right ) - "273" "." "15"} {} T º C = T K 273 . 15 size 12{T rSub { size 8{°C} } =T rSub { size 8{K} } - "273" "." "15"} {}
Fahrenheit to Kelvin T K = 5 9 T º F 32 + 273 . 15 size 12{T left (K right )= { {5} over {9} } left [T left (°F right ) - "32" right ]+"273" "." "15"} {} T K = 5 9 T º F 32 + 273 . 15 size 12{T rSub { size 8{K} } = { {5} over {9} } left (T rSub { size 8{°F} } - "32" right )+"273" "." "15"} {}
Kelvin to Fahrenheit T ( º F ) = 9 5 T K 273 . 15 + 32 size 12{T \( °F \) = { {9} over {5} } left [T left (K right ) - "273" "." "15" right ]+"32"} {} T º F = 9 5 T K 273 . 15 + 32 size 12{T rSub { size 8{°F} } = { {9} over {5} } left (T rSub { size 8{K} } - "273" "." "15" right )+"32"} {}

Notice that the conversions between Fahrenheit and Kelvin look quite complicated. In fact, they are simple combinations of the conversions between Fahrenheit and Celsius, and the conversions between Celsius and Kelvin.

Converting between temperature scales: room temperature

“Room temperature” is generally defined to be 25 º C size 12{"25"°C} {} . (a) What is room temperature in º F size 12{°F} {} ? (b) What is it in K?

Strategy

To answer these questions, all we need to do is choose the correct conversion equations and plug in the known values.

Solution for (a)

1. Choose the right equation. To convert from º C size 12{°C} {} to º F size 12{°F} {} , use the equation

T º F = 9 5 T º C + 32 . size 12{T rSub { size 8{°F} } = { {9} over {5} } T rSub { size 8{°C} } +"32" "." } {}

2. Plug the known value into the equation and solve:

T º F = 9 5 25 º C + 32 = 77 º F . size 12{T rSub { size 8{°F} } = { {9} over {5} } "25"°C+"32"="77"°F "." } {}

Solution for (b)

1. Choose the right equation. To convert from º C size 12{°C} {} to K, use the equation

T K = T º C + 273 . 15 . size 12{T rSub { size 8{K} } =T rSub { size 8{°C} } +"273" "." "15" "." } {}

2. Plug the known value into the equation and solve:

T K = 25 º C + 273 . 15 = 298 K . size 12{T rSub { size 8{K} } ="25"°C+"273" "." "15"="298"`K "." } {}
Got questions? Get instant answers now!

Converting between temperature scales: the reaumur scale

The Reaumur scale is a temperature scale that was used widely in Europe in the 18th and 19th centuries. On the Reaumur temperature scale, the freezing point of water is 0 º R size 12{0°R} {} and the boiling temperature is 80 º R size 12{"80"°R} {} . If “room temperature” is 25 º C size 12{"25"°C} {} on the Celsius scale, what is it on the Reaumur scale?

Strategy

To answer this question, we must compare the Reaumur scale to the Celsius scale. The difference between the freezing point and boiling point of water on the Reaumur scale is 80 º R size 12{"80"°R} {} . On the Celsius scale it is 100 º C size 12{"100"°C} {} . Therefore 100 º C = 80 º R size 12{"100"°C="80"°R} {} . Both scales start at 0 º size 12{0°} {} for freezing, so we can derive a simple formula to convert between temperatures on the two scales.

Solution

1. Derive a formula to convert from one scale to the other:

T º R = 0 . 8 º R º C × T º C . size 12{T rSub { size 8{°R} } = { {0 "." 8°R} over {°C} } times T rSub { size 8{°C} } "." } {}

2. Plug the known value into the equation and solve:

T º R = 0 . 8 º R º C × 25 º C = 20 º R . size 12{T rSub { size 8{°R} } = { {0 "." 8°R} over {°C} } times "25"°C="20"°R "." } {}
Got questions? Get instant answers now!

Temperature ranges in the universe

[link] shows the wide range of temperatures found in the universe. Human beings have been known to survive with body temperatures within a small range, from 24 º C size 12{"24"°C} {} to 44 º C size 12{"44"°C} {} ( 75 º F size 12{ \( "75"°F} {} to 111 º F size 12{"111"°F} {} ). The average normal body temperature is usually given as 37 . 0 º C size 12{"37" "." 0°C} {} ( 98 . 6 º F size 12{"98" "." 6°F} {} ), and variations in this temperature can indicate a medical condition: a fever, an infection, a tumor, or circulatory problems (see [link] ).

This figure consists of four different infrared thermographs of a person's head and neck, taken when the person's head was positioned at four different angles. The person's face and neck are mostly red and orange, with patches of white, green, and yellow. The red and white colors correspond to hot areas. The person's hair ranges in color from green to light blue to dark blue. The blue color corresponds to cold areas.
This image of radiation from a person’s body (an infrared thermograph) shows the location of temperature abnormalities in the upper body. Dark blue corresponds to cold areas and red to white corresponds to hot areas. An elevated temperature might be an indication of malignant tissue (a cancerous tumor in the breast, for example), while a depressed temperature might be due to a decline in blood flow from a clot. In this case, the abnormalities are caused by a condition called hyperhidrosis. (credit: Porcelina81, Wikimedia Commons)

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask