<< Chapter < Page Chapter >> Page >

Calculate doppler shift: a train horn

Suppose a train that has a 150-Hz horn is moving at 35.0 m/s in still air on a day when the speed of sound is 340 m/s.

(a) What frequencies are observed by a stationary person at the side of the tracks as the train approaches and after it passes?

(b) What frequency is observed by the train’s engineer traveling on the train?

Strategy

To find the observed frequency in (a), f obs = f s v w v w ± v s , size 12{f rSub { size 8{"obs"} } =f rSub { size 8{s} } left ( { {v rSub { size 8{w} } } over {v rSub { size 8{w} } +- v rSub { size 8{s} } } } right )} {} must be used because the source is moving. The minus sign is used for the approaching train, and the plus sign for the receding train. In (b), there are two Doppler shifts—one for a moving source and the other for a moving observer.

Solution for (a)

(1) Enter known values into f obs = f s v w v w v s . size 12{f rSub { size 8{"obs"} } =f rSub { size 8{s} } left ( { {v rSub { size 8{w} } } over {v rSub { size 8{w} } +- v rSub { size 8{s} } } } right )} {}

f obs = f s v w v w v s = 150 Hz 340 m/s 340 m/s – 35.0 m/s size 12{f rSub { size 8{"obs"} } =f rSub { size 8{s} } left ( { {v rSub { size 8{w} } } over {v rSub { size 8{w} } - v rSub { size 8{s} } } } right )= left ("150"" Hz" right ) left ( { {"340"" m/s"} over {"340 m/s-35" "." "0 m/s"} } right )} {}

(2) Calculate the frequency observed by a stationary person as the train approaches.

f obs = ( 150 Hz ) ( 1.11 ) = 167 Hz size 12{ {}= \( "150" ital "Hz" \) \( 1 "." "11" \) ="167" ital "Hz"} {}

(3) Use the same equation with the plus sign to find the frequency heard by a stationary person as the train recedes.

f obs = f s v w v w + v s = 150 Hz 340 m/s 340 m/s + 35.0 m/s size 12{f rSub { size 8{"obs"} } =f rSub { size 8{s} } left ( { {v rSub { size 8{w} } } over {v rSub { size 8{w} } +v rSub { size 8{s} } } } right )= left ("150"" Hz" right ) left ( { {"340"" m/s"} over {"340 m/s-35" "." "0 m/s"} } right )} {}

(4) Calculate the second frequency.

f obs = ( 150 Hz ) ( 0.907 ) = 136 Hz size 12{ {}= \( "150" ital "Hz" \) \( 0 "." "97" \) ="136" ital "Hz"} {}

Discussion on (a)

The numbers calculated are valid when the train is far enough away that the motion is nearly along the line joining train and observer. In both cases, the shift is significant and easily noticed. Note that the shift is 17.0 Hz for motion toward and 14.0 Hz for motion away. The shifts are not symmetric.

Solution for (b)

(1) Identify knowns:

  • It seems reasonable that the engineer would receive the same frequency as emitted by the horn, because the relative velocity between them is zero.
  • Relative to the medium (air), the speeds are v s = v obs = 35.0 m/s.
  • The first Doppler shift is for the moving observer; the second is for the moving source.

(2) Use the following equation:

f obs = [ f s v w ± v obs v w ] v w v w ± v s . size 12{f rSub { size 8{"obs"} } = left [f rSub { size 8{s} } left ( { {v rSub { size 8{w} } +- v rSub { size 8{"obs"} } } over {v rSub { size 8{w} } } } right ) right ] rSub { size 8{s} } left ( { {v rSub { size 8{w} } } over {v rSub { size 8{w} } +v rSub { size 8{s} } } } right )} {}

The quantity in the square brackets is the Doppler-shifted frequency due to a moving observer. The factor on the right is the effect of the moving source.

(3) Because the train engineer is moving in the direction toward the horn, we must use the plus sign for v obs ; however, because the horn is also moving in the direction away from the engineer, we also use the plus sign for v s . But the train is carrying both the engineer and the horn at the same velocity, so v s = v obs . As a result, everything but f s cancels, yielding

f obs = f s . size 12{f rSub { size 8{s} } } {}

Discussion for (b)

We may expect that there is no change in frequency when source and observer move together because it fits your experience. For example, there is no Doppler shift in the frequency of conversations between driver and passenger on a motorcycle. People talking when a wind moves the air between them also observe no Doppler shift in their conversation. The crucial point is that source and observer are not moving relative to each other.

Sonic booms to bow wakes

What happens to the sound produced by a moving source, such as a jet airplane, that approaches or even exceeds the speed of sound? The answer to this question applies not only to sound but to all other waves as well.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask