<< Chapter < Page Chapter >> Page >

Section summary

  • The first law of thermodynamics is given as Δ U = Q W size 12{ΔU=Q - W} {} , where Δ U size 12{ΔU} {} is the change in internal energy of a system, Q size 12{Q} {} is the net heat transfer (the sum of all heat transfer into and out of the system), and W size 12{W} {} is the net work done (the sum of all work done on or by the system).
  • Both Q size 12{Q} {} and W size 12{W} {} are energy in transit; only Δ U size 12{ΔU} {} represents an independent quantity capable of being stored.
  • The internal energy U size 12{U} {} of a system depends only on the state of the system and not how it reached that state.
  • Metabolism of living organisms, and photosynthesis of plants, are specialized types of heat transfer, doing work, and internal energy of systems.

Conceptual questions

Describe the photo of the tea kettle at the beginning of this section in terms of heat transfer, work done, and internal energy. How is heat being transferred? What is the work done and what is doing it? How does the kettle maintain its internal energy?

Got questions? Get instant answers now!

The first law of thermodynamics and the conservation of energy, as discussed in Conservation of Energy , are clearly related. How do they differ in the types of energy considered?

Got questions? Get instant answers now!

Heat transfer Q size 12{Q} {} and work done W size 12{W} {} are always energy in transit, whereas internal energy U size 12{U} {} is energy stored in a system. Give an example of each type of energy, and state specifically how it is either in transit or resides in a system.

Got questions? Get instant answers now!

How do heat transfer and internal energy differ? In particular, which can be stored as such in a system and which cannot?

Got questions? Get instant answers now!

If you run down some stairs and stop, what happens to your kinetic energy and your initial gravitational potential energy?

Got questions? Get instant answers now!

Give an explanation of how food energy (calories) can be viewed as molecular potential energy (consistent with the atomic and molecular definition of internal energy).

Got questions? Get instant answers now!

Identify the type of energy transferred to your body in each of the following as either internal energy, heat transfer, or doing work: (a) basking in sunlight; (b) eating food; (c) riding an elevator to a higher floor.

Got questions? Get instant answers now!

Problems&Exercises

What is the change in internal energy of a car if you put 12.0 gal of gasoline into its tank? The energy content of gasoline is 1 . 3 × 10 8 J/gal size 12{1 "." 3 times "10" rSup { size 8{8} } " J/gal"} {} . All other factors, such as the car's temperature, are constant.

1 . 6 × 10 9 J size 12{1 "." 6 times "10" rSup { size 8{9} } " J"} {}

Got questions? Get instant answers now!

How much heat transfer occurs from a system, if its internal energy decreased by 150 J while it was doing 30.0 J of work?

Got questions? Get instant answers now!

A system does 1 . 80 × 10 8 J size 12{1 "." "80"´"10" rSup { size 8{8} } " J"} {} of work while 7 . 50 × 10 8 J size 12{7 "." "50"´"10" rSup { size 8{8} } " J"} {} of heat transfer occurs to the environment. What is the change in internal energy of the system assuming no other changes (such as in temperature or by the addition of fuel)?

- 9 . 30 × 10 8 J size 12{ +- 9 "." "30"´"10" rSup { size 8{8} } " J"} {}

Got questions? Get instant answers now!

What is the change in internal energy of a system which does 4 . 50 × 10 5 J size 12{4 "." "50"´"10" rSup { size 8{5} } " J"} {} of work while 3 . 00 × 10 6 J size 12{3 "." "00"´"10" rSup { size 8{6} } " J"} {} of heat transfer occurs into the system, and 8 . 00 × 10 6 J size 12{8 "." "00"´"10" rSup { size 8{6} } " J"} {} of heat transfer occurs to the environment?

Got questions? Get instant answers now!

Suppose a woman does 500 J of work and 9500 J of heat transfer occurs into the environment in the process. (a) What is the decrease in her internal energy, assuming no change in temperature or consumption of food? (That is, there is no other energy transfer.) (b) What is her efficiency?

(a) 1 . 0 × 10 4 J size 12{ - 1 "." 0 times "10" rSup { size 8{4} } " J"} {} , or 2 . 39 kcal

(b) 5.00%

Got questions? Get instant answers now!

(a) How much food energy will a man metabolize in the process of doing 35.0 kJ of work with an efficiency of 5.00%? (b) How much heat transfer occurs to the environment to keep his temperature constant? Explicitly show how you follow the steps in the Problem-Solving Strategy for thermodynamics found in Problem-Solving Strategies for Thermodynamics .

Got questions? Get instant answers now!

(a) What is the average metabolic rate in watts of a man who metabolizes 10,500 kJ of food energy in one day? (b) What is the maximum amount of work in joules he can do without breaking down fat, assuming a maximum efficiency of 20.0%? (c) Compare his work output with the daily output of a 187-W (0.250-horsepower) motor.

(a) 122 W

(b) 2 . 10 × 10 6 J size 12{2 "." "09" times "10" rSup { size 8{6} } " J"} {}

(c) Work done by the motor is 1 . 61 × 10 7 J size 12{1 "." "61" times "10" rSup { size 8{7} } " J"} {} ;thus the motor produces 7.67 times the work done by the man

Got questions? Get instant answers now!

(a) How long will the energy in a 1470-kJ (350-kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficiency of 20.0% (such as in leisurely climbing stairs)? (b) Does the time found in part (a) imply that it is easy to consume more food energy than you can reasonably expect to work off with exercise?

Got questions? Get instant answers now!

(a) A woman climbing the Washington Monument metabolizes 6 . 00 × 10 2 kJ size 12{6 "." "00" times "10" rSup { size 8{2} } " kJ"} {} of food energy. If her efficiency is 18.0%, how much heat transfer occurs to the environment to keep her temperature constant? (b) Discuss the amount of heat transfer found in (a). Is it consistent with the fact that you quickly warm up when exercising?

(a) 492 kJ

(b) This amount of heat is consistent with the fact that you warm quickly when exercising. Since the body is inefficient, the excess heat produced must be dissipated through sweating, breathing, etc.

Got questions? Get instant answers now!

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask