<< Chapter < Page Chapter >> Page >
I 1 R 1 = I 2 R 3 . size 12{I rSub { size 8{1} } R rSub { size 8{1} } =I rSub { size 8{2} } R rSub { size 8{3} } } {}

Again, since b and d are at the same potential, the IR size 12{ ital "IR"} {} drop along dc must equal the IR size 12{ ital "IR"} {} drop along bc. Thus,

I 1 R 2 = I 2 R x . size 12{I rSub { size 8{1} } R rSub { size 8{2} } =I rSub { size 8{2} } R rSub { size 8{x} } } {}

Taking the ratio of these last two expressions gives

I 1 R 1 I 1 R 2 = I 2 R 3 I 2 R x . size 12{ { {I rSub { size 8{1} } R rSub { size 8{1} } } over {I rSub { size 8{1} } R rSub { size 8{2} } } } = { {I rSub { size 8{2} } R rSub { size 8{3} } } over {I rSub { size 8{2} } R rSub { size 8{x} } } } } {}

Canceling the currents and solving for R x yields

R x = R 3 R 2 R 1 . size 12{R rSub { size 8{x} } =R rSub { size 8{3} } { {R rSub { size 8{2} } } over {R rSub { size 8{1} } } } } {}
This complex circuit diagram shows a galvanometer connected in the center arm of a Wheatstone bridge arrangement. All the other four arms have a resistor. The bridge is connected to a cell of e m f script E and internal resistance r.
The Wheatstone bridge is used to calculate unknown resistances. The variable resistance R 3 size 12{R rSub { size 8{3} } } {} is adjusted until the galvanometer reads zero with the switch closed. This simplifies the circuit, allowing R x size 12{R rSub { size 8{x} } } {} to be calculated based on the IR size 12{ ital "IR"} {} drops as discussed in the text.

This equation is used to calculate the unknown resistance when current through the galvanometer is zero. This method can be very accurate (often to four significant digits), but it is limited by two factors. First, it is not possible to get the current through the galvanometer to be exactly zero. Second, there are always uncertainties in R 1 size 12{R rSub { size 8{1} } } {} , R 2 size 12{R rSub { size 8{2} } } {} , and R 3 size 12{R rSub { size 8{3} } } {} , which contribute to the uncertainty in R x size 12{R rSub { size 8{x} } } {} .

Identify other factors that might limit the accuracy of null measurements. Would the use of a digital device that is more sensitive than a galvanometer improve the accuracy of null measurements?

One factor would be resistance in the wires and connections in a null measurement. These are impossible to make zero, and they can change over time. Another factor would be temperature variations in resistance, which can be reduced but not completely eliminated by choice of material. Digital devices sensitive to smaller currents than analog devices do improve the accuracy of null measurements because they allow you to get the current closer to zero.

Got questions? Get instant answers now!

Section summary

  • Null measurement techniques achieve greater accuracy by balancing a circuit so that no current flows through the measuring device.
  • One such device, for determining voltage, is a potentiometer.
  • Another null measurement device, for determining resistance, is the Wheatstone bridge.
  • Other physical quantities can also be measured with null measurement techniques.

Conceptual questions

Why can a null measurement be more accurate than one using standard voltmeters and ammeters? What factors limit the accuracy of null measurements?

Got questions? Get instant answers now!

If a potentiometer is used to measure cell emfs on the order of a few volts, why is it most accurate for the standard emf s size 12{"emf" rSub { size 8{s} } } {} to be the same order of magnitude and the resistances to be in the range of a few ohms?

Got questions? Get instant answers now!

Problem exercises

What is the emf x size 12{"emf" rSub { size 8{x} } } {} of a cell being measured in a potentiometer, if the standard cell’s emf is 12.0 V and the potentiometer balances for R x = 5 . 000 Ω size 12{R rSub { size 8{x} } =5 "." "000" %OMEGA } {} and R s = 2 . 500 Ω size 12{R rSub { size 8{s} } =2 "." "500" %OMEGA } {} ?

24.0 V

Got questions? Get instant answers now!

Calculate the emf x size 12{"emf" rSub { size 8{x} } } {} of a dry cell for which a potentiometer is balanced when R x = 1 . 200 Ω size 12{R rSub { size 8{x} } =1 "." "200" %OMEGA } {} , while an alkaline standard cell with an emf of 1.600 V requires R s = 1 . 247 Ω size 12{R rSub { size 8{s} } =1 "." "247" %OMEGA } {} to balance the potentiometer.

Got questions? Get instant answers now!

When an unknown resistance R x size 12{R rSub { size 8{x} } } {} is placed in a Wheatstone bridge, it is possible to balance the bridge by adjusting R 3 size 12{R rSub { size 8{3} } } {} to be 2500 Ω size 12{"2500" %OMEGA } {} . What is R x size 12{R rSub { size 8{x} } } {} if R 2 R 1 = 0 . 625 size 12{ { {R rSub { size 8{2} } } over {R rSub { size 8{1} } } } =0 "." "625"} {} ?

1 . 56 k Ω size 12{1 "." "56 k" %OMEGA } {}

Got questions? Get instant answers now!

To what value must you adjust R 3 size 12{R rSub { size 8{3} } } {} to balance a Wheatstone bridge, if the unknown resistance R x size 12{R rSub { size 8{x} } } {} is 100 Ω size 12{"100" %OMEGA } {} , R 1 size 12{R rSub { size 8{1} } } {} is 50 . 0 Ω size 12{"50" "." 0 %OMEGA } {} , and R 2 size 12{R rSub { size 8{2} } } {} is 175 Ω size 12{"175" %OMEGA } {} ?

Got questions? Get instant answers now!

(a) What is the unknown emf x size 12{"emf" rSub { size 8{x} } } {} in a potentiometer that balances when R x size 12{R rSub { size 8{x} } } {} is 10 . 0 Ω size 12{"10" "." 0 %OMEGA } {} , and balances when R s size 12{R rSub { size 8{s} } } {} is 15 . 0 Ω size 12{"15" "." 0 %OMEGA } {} for a standard 3.000-V emf? (b) The same emf x size 12{"emf" rSub { size 8{x} } } {} is placed in the same potentiometer, which now balances when R s size 12{R rSub { size 8{s} } } {} is 15 . 0 Ω size 12{"15" "." 0 %OMEGA } {} for a standard emf of 3.100 V. At what resistance R x size 12{R rSub { size 8{x} } } {} will the potentiometer balance?

(a) 2.00 V

(b) 9 . 68 Ω size 12{9 "." "68 " %OMEGA } {}

Got questions? Get instant answers now!

Suppose you want to measure resistances in the range from 10 . 0 Ω size 12{"10" "." 0 %OMEGA } {} to 10 . 0 kΩ size 12{"10" "." 0" k" %OMEGA } {} using a Wheatstone bridge that has R 2 R 1 = 2 . 000 size 12{ { {R rSub { size 8{2} } } over {R rSub { size 8{1} } } } =2 "." "000"} {} . Over what range should R 3 size 12{R rSub { size 8{3} } } {} be adjustable?

Range = 5 . 00 Ω to 5 . 00 k Ω size 12{"Range=5" "." "00 " %OMEGA " to "5 "." "00"" k" %OMEGA } {}
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask