<< Chapter < Page Chapter >> Page >
F S = 6 πRηv . size 12{F rSub { size 8{S} } =6πRηv} {}
Part a of the figure shows a sphere moving in a fluid. The fluid lines are shown to move toward the left. The viscous force on the sphere is also toward the left given by F v as shown by the arrow. The flow is shown as laminar as shown by linear bending lines. Part b of the figure shows a sphere moving with higher speed in a fluid. The fluid lines are shown to move toward the left. The viscous force on the sphere is also toward the left given by F v prime as shown by the arrow. The flow is shown as laminar above and below the sphere shown by linear lines of flow and turbulent on left of the sphere shown by curly lines of flow. Part c of the figure shows a sphere still moving with higher speed in a fluid. The fluid lines are shown to move toward the left at the edges of flow away from the sphere. The viscous force on the sphere is also toward the left given by F v double prime as shown by the arrow. The flow is turbulent all around the sphere as shown by curly lines of flow. The viscous drag F v double prime is shown to be still greater by longer length of arrows.
(a) Motion of this sphere to the right is equivalent to fluid flow to the left. Here the flow is laminar with N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} less than 1. There is a force, called viscous drag F V size 12{F rSub { size 8{V} } } {} , to the left on the ball due to the fluid's viscosity. (b) At a higher speed, the flow becomes partially turbulent, creating a wake starting where the flow lines separate from the surface. Pressure in the wake is less than in front of the sphere, because fluid speed is less, creating a net force to the left F V size 12{ { {F}} sup { ' } rSub { size 8{V} } } {} that is significantly greater than for laminar flow. Here N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} is greater than 10. (c) At much higher speeds, where N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} is greater than 10 6 size 12{"10" rSup { size 8{6} } } {} , flow becomes turbulent everywhere on the surface and behind the sphere. Drag increases dramatically.

An interesting consequence of the increase in F V size 12{F rSub { size 8{V} } } {} with speed is that an object falling through a fluid will not continue to accelerate indefinitely (as it would if we neglect air resistance, for example). Instead, viscous drag increases, slowing acceleration, until a critical speed, called the terminal speed    , is reached and the acceleration of the object becomes zero. Once this happens, the object continues to fall at constant speed (the terminal speed). This is the case for particles of sand falling in the ocean, cells falling in a centrifuge, and sky divers falling through the air. [link] shows some of the factors that affect terminal speed. There is a viscous drag on the object that depends on the viscosity of the fluid and the size of the object. But there is also a buoyant force that depends on the density of the object relative to the fluid. Terminal speed will be greatest for low-viscosity fluids and objects with high densities and small sizes. Thus a skydiver falls more slowly with outspread limbs than when they are in a pike position—head first with hands at their side and legs together.

Take-home experiment: don't lose your marbles

By measuring the terminal speed of a slowly moving sphere in a viscous fluid, one can find the viscosity of that fluid (at that temperature). It can be difficult to find small ball bearings around the house, but a small marble will do. Gather two or three fluids (syrup, motor oil, honey, olive oil, etc.) and a thick, tall clear glass or vase. Drop the marble into the center of the fluid and time its fall (after letting it drop a little to reach its terminal speed). Compare your values for the terminal speed and see if they are inversely proportional to the viscosities as listed in [link] . Does it make a difference if the marble is dropped near the side of the glass?

Knowledge of terminal speed is useful for estimating sedimentation rates of small particles. We know from watching mud settle out of dirty water that sedimentation is usually a slow process. Centrifuges are used to speed sedimentation by creating accelerated frames in which gravitational acceleration is replaced by centripetal acceleration, which can be much greater, increasing the terminal speed.

The figure shows the forces acting on an oval shaped object falling through a viscous fluid. An enlarged view of the object is shown toward the left to analyze the forces in detail. The weight of the object w acts vertically downward. The viscous drag F v and buoyant force F b acts vertically upward. The length of the object is given by L. The density of the object is given by rho obj and density of the fluid by rho fl.
There are three forces acting on an object falling through a viscous fluid: its weight w size 12{w} {} , the viscous drag F V size 12{F rSub { size 8{V} } } {} , and the buoyant force F B size 12{F rSub { size 8{B} } } {} .

Section summary

  • When an object moves in a fluid, there is a different form of the Reynolds number N R = ρ vL η (object in fluid), size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {} which indicates whether flow is laminar or turbulent.
  • For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} less than about one, flow is laminar.
  • For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than 10 6 size 12{"10" rSup { size 8{6} } } {} , flow is entirely turbulent.

Conceptual questions

What direction will a helium balloon move inside a car that is slowing down—toward the front or back? Explain your answer.

Got questions? Get instant answers now!

Will identical raindrops fall more rapidly in 5º C size 12{5 rSup { size 12{ circ } } C} {} air or 25º C size 12{"25" rSup { size 12{ circ } } C} {} air, neglecting any differences in air density? Explain your answer.

Got questions? Get instant answers now!

If you took two marbles of different sizes, what would you expect to observe about the relative magnitudes of their terminal velocities?

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask