<< Chapter < Page Chapter >> Page >

Section summary

  • Statics plays an important part in understanding everyday strains in our muscles and bones.
  • Many lever systems in the body have a mechanical advantage of significantly less than one, as many of our muscles are attached close to joints.
  • Someone with good posture stands or sits in such a way that the person's center of gravity lies directly above the pivot point in the hips, thereby avoiding back strain and damage to disks.

Conceptual questions

Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by muscles inside the body?

Got questions? Get instant answers now!

Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can these forces be even greater than muscle forces?

Got questions? Get instant answers now!

Certain types of dinosaurs were bipedal (walked on two legs). What is a good reason that these creatures invariably had long tails if they had long necks?

Got questions? Get instant answers now!

Swimmers and athletes during competition need to go through certain postures at the beginning of the race. Consider the balance of the person and why start-offs are so important for races.

Got questions? Get instant answers now!

If the maximum force the biceps muscle can exert is 1000 N, can we pick up an object that weighs 1000 N? Explain your answer.

Got questions? Get instant answers now!

Suppose the biceps muscle was attached through tendons to the upper arm close to the elbow and the forearm near the wrist. What would be the advantages and disadvantages of this type of construction for the motion of the arm?

Got questions? Get instant answers now!

Explain one of the reasons why pregnant women often suffer from back strain late in their pregnancy.

Got questions? Get instant answers now!

Problems&Exercises

Verify that the force in the elbow joint in [link] is 407 N, as stated in the text.

F B = 470 N; r 1 = 4.00 cm; w a = 2.50 kg; r 2 = 16.0 cm; w b = 4.00 kg; r 3 = 38.0 cm F E = w a r 2 r 1 1 + w b r 3 r 1 1 = 2.50 kg 9.80 m / s 2 16.0 cm 4.0 cm 1 + 4.00 kg 9.80 m / s 2 38.0 cm 4.00 cm 1 = 407 N alignl { stack { size 12{F rSub { size 8{B} } ="470"" N ; "r rSub { size 8{1} } =4 cdot "00"" cm ; "w rSub { size 8{a} } =2 cdot "50"" kg ;"} {} #r rSub { size 8{2} } ="16" cdot 0" cm ;" {} # w rSub { size 8{b} } =4 cdot "00"" kg ; "r rSub { size 8{3} } ="38" cdot 0" cm" {} #F rSub { size 8{E} } times r rSub { size 8{1} } =w rSub { size 8{a} } left ( { {r rSub { size 8{2} } } over {r rSub { size 8{1} } } } - 1 right )+w rSub { size 8{b} } left ( { {r rSub { size 8{3} } } over {r rSub { size 8{1} } } } - 1 right ) {} # = left (2 cdot "50 kg" right ) left (9 cdot "80 " {m} slash {s rSup { size 8{2} } } right ) left ( { {"16" cdot "0 cm"} over {4 cdot "0 cm"} } - 1 right ) {} #+ left (4 cdot "00 kg" right ) left (9 cdot "80 " {m} slash {s rSup { size 8{2} } } right ) left ( { {"38" cdot "0 cm"} over {4 cdot "00 cm"} } - 1 right ) {} # = {underline {"407"" N"}} {}} } {}

Got questions? Get instant answers now!

Two muscles in the back of the leg pull on the Achilles tendon as shown in [link] . What total force do they exert?

An Achilles tendon is shown in the figure. A vertical dotted line is shown at the middle of the top part. Two vectors inclined at twenty degree each with respect to the vertical dotted line are shown.
The Achilles tendon of the posterior leg serves to attach plantaris, gastrocnemius, and soleus muscles to calcaneus bone.
Got questions? Get instant answers now!

The upper leg muscle (quadriceps) exerts a force of 1250 N, which is carried by a tendon over the kneecap (the patella) at the angles shown in [link] . Find the direction and magnitude of the force exerted by the kneecap on the upper leg bone (the femur).

The figure shows a side view of the bones of a knee and the quadriceps muscle. The upper bone is inclined at fifty five degrees to the horizontal and the tension exerted by the quadriceps muscle is one thousand two hundred and fifty newtons. The tendon from the knee cap to the lower bone is inclined at seventy five degrees below the horizontal. The force in this direction is the same as that provided by the quadriceps.
The knee joint works like a hinge to bend and straighten the lower leg. It permits a person to sit, stand, and pivot.

1.1 × 10 3 N θ = 190 º ccw from positive x axis alignl { stack { size 12{1 "." 1 times "10" rSup { size 8{3} } `N} {} #θ="190"°`"ccw"`"from"`"positive"`x`"axis" {} } } {}

Got questions? Get instant answers now!

A device for exercising the upper leg muscle is shown in [link] , together with a schematic representation of an equivalent lever system. Calculate the force exerted by the upper leg muscle to lift the mass at a constant speed. Explicitly show how you follow the steps in the Problem-Solving Strategy for static equilibrium in Applications of Statistics, Including Problem-Solving Strategies .

A machine for leg exercise is shown. A wire is tied to a cuff around the lower part of a leg. This wire passes over three pulleys and is connected to a ten kg weight. The tension in the wire is shown near the leg in the direction of the wire. On the leg, a point on knee is shown as the pivot. The distance between the pivot and the point where the wire is tied to the leg is thirty five centimeters. A free-body diagram of the leg, represented as a pole, is shown.
A mass is connected by pulleys and wires to the ankle in this exercise device.
Got questions? Get instant answers now!

A person working at a drafting board may hold her head as shown in [link] , requiring muscle action to support the head. The three major acting forces are shown. Calculate the direction and magnitude of the force supplied by the upper vertebrae F V size 12{F rSub { size 8{V} } } {} to hold the head stationary, assuming that this force acts along a line through the center of mass as do the weight and muscle force.

The head of a person working at a drafting board in relaxed position is shown. The inclination of the head is theta to the horizontal and the center of gravity is near the top of the head. The weight of the head is fifty newtons and is acting downward at the center of gravity. Three major forces are shown. The force exerted along the neck is sixty newtons.

F V = 97 N, θ = 59º size 12{F rSub { size 8{V} } ="97"`N,`θ="59"°} {}

Got questions? Get instant answers now!

Questions & Answers

sound waves can be modeled as a change in pressure ,why is the change on in pressure used and not the actual pressure
Dotto Reply
what is the best
Kelly Reply
Water,air,fire
Maung
I am a university student of Myanmar.I am first year,first semester.I want to learn about physics.
Maung
two charges qA and qB are separated by a distance x. if we double the distance between the charges and triple the magnitude of the charge A, what happens to the magnitude of the force that charge A exerts on charge B. what happens to the magnitude of the force that charge B exerts on charge A
tanla Reply
how to get mcq and essay?
Owen Reply
what is force
Ibrahim Reply
force is a pull or push action on an object or a body.
joseph
what is a significant figure? and give example
Frederick
numerical chapter number 3
Sajid Reply
joined
Ibrahim
a reflected ray on a mirror makes an angle of 20degree with the incident ray when the mirror is rotated 15degree what angle will the incident ray now make with the reflected ray
Akinyemi Reply
what is simple harmonic motion
Solomon Reply
how vapour pressure of a liquid lost through convection
Yomzi Reply
Roofs are sometimes pushed off vertically during a tropical cyclone, and buildings sometimes explode outward when hit by a tornado. Use Bernoulli’s principle to explain these phenomena.
Aliraza Reply
Plz answer the question ☝️☝️
Aliraza
what's the basic si unit of acceleration
ELLOIN Reply
Explain why the change in velocity is different in the two frames, whereas the change in kinetic energy is the same in both.
Fabian Reply
Insulators (nonmetals) have a higher BE than metals, and it is more difficult for photons to eject electrons from insulators. Discuss how this relates to the free charges in metals that make them good conductors.
Muhammad Reply
Is the photoelectric effect a direct consequence of the wave character of EM radiation or of the particle character of EM radiation? Explain briefly.
Muhammad
Determine the total force and the absolute pressure on the bottom of a swimming pool 28.0m by 8.5m whose uniform depth is 1 .8m.
Henny Reply
how solve this problem?
Foday
P(pressure)=density ×depth×acceleration due to gravity Force =P×Area(28.0x8.5)
Fomukom
for the answer to complete, the units need specified why
muqaddas Reply
That's just how the AP grades. Otherwise, you could be talking about m/s when the answer requires m/s^2. They need to know what you are referring to.
Kyle

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask