<< Chapter < Page Chapter >> Page >

Relativistic velocity addition

The second postulate of relativity (verified by extensive experimental observation) says that classical velocity addition does not apply to light. Imagine a car traveling at night along a straight road, as in [link] . If classical velocity addition applied to light, then the light from the car’s headlights would approach the observer on the sidewalk at a speed u=v+c size 12{ ital "u=v+c"} {} . But we know that light will move away from the car at speed c size 12{c} {} relative to the driver of the car, and light will move towards the observer on the sidewalk at speed c size 12{c} {} , too.

A car is moving towards right with velocity v. A boy standing on the side-walk observes the car. The velocity of light u primed is shown to be c as observed by the girl in the car and the velocity of light u is also c as observed by the boy.
According to experiment and the second postulate of relativity, light from the car’s headlights moves away from the car at speed c size 12{c} {} and towards the observer on the sidewalk at speed c size 12{c} {} . Classical velocity addition is not valid.

Relativistic velocity addition

Either light is an exception, or the classical velocity addition formula only works at low velocities. The latter is the case. The correct formula for one-dimensional relativistic velocity addition    is

u = v+u 1 + v u c 2 , size 12{ ital "u=" { { ital "v+u'"} over {1+ { {v` ital "u'"} over {c rSup { size 8{2} } } } } } } {}

where v is the relative velocity between two observers, u is the velocity of an object relative to one observer, and u is the velocity relative to the other observer. (For ease of visualization, we often choose to measure u in our reference frame, while someone moving at v relative to us measures u .) Note that the term v u c 2 becomes very small at low velocities, and u = v+u 1 + v u c 2 gives a result very close to classical velocity addition. As before, we see that classical velocity addition is an excellent approximation to the correct relativistic formula for small velocities. No wonder that it seems correct in our experience.

Showing that the speed of light towards an observer is constant (in a vacuum): the speed of light is the speed of light

Suppose a spaceship heading directly towards the Earth at half the speed of light sends a signal to us on a laser-produced beam of light. Given that the light leaves the ship at speed c size 12{c} {} as observed from the ship, calculate the speed at which it approaches the Earth.

A spacecraft is heading towards earth v equals zero point five zero zero times c. A laser beam from the ship travels towards the Earth with velocity c as shown by a vector. A second spaceship traveling away from the Earth. The velocity of the second ship and second laser are the same as the first, but in the opposite direction.

Strategy

Because the light and the spaceship are moving at relativistic speeds, we cannot use simple velocity addition. Instead, we can determine the speed at which the light approaches the Earth using relativistic velocity addition.

Solution

  1. Identify the knowns. v= 0 . 500 c ; u = c
  2. Identify the unknown. u size 12{u} {}
  3. Choose the appropriate equation. u = v+u 1 + v u c 2 size 12{ ital "u=" { { ital "v+u'"} over {1+ { {v` ital "u'"} over {c rSup { size 8{2} } } } } } } {}
  4. Plug the knowns into the equation.
    u = v+u 1 + v u c 2 = 0.500 c + c 1 + ( 0.500 c ) ( c ) c 2 = ( 0.500 + 1 ) c 1 + 0.500 c 2 c 2 = 1.500 c 1 + 0.500 = 1.500 c 1.500 = c

Discussion

Relativistic velocity addition gives the correct result. Light leaves the ship at speed c size 12{c} {} and approaches the Earth at speed c size 12{c} {} . The speed of light is independent of the relative motion of source and observer, whether the observer is on the ship or Earth-bound.

Got questions? Get instant answers now!

Velocities cannot add to greater than the speed of light, provided that v size 12{v} {} is less than c size 12{c} {} and u does not exceed c . The following example illustrates that relativistic velocity addition is not as symmetric as classical velocity addition.

Comparing the speed of light towards and away from an observer: relativistic package delivery

Suppose the spaceship in the previous example is approaching the Earth at half the speed of light and shoots a canister at a speed of 0.750 c . (a) At what velocity will an Earth-bound observer see the canister if it is shot directly towards the Earth? (b) If it is shot directly away from the Earth? (See [link] .)

In part a, a spaceship is moving towards the earth from left to right with a velocity v equals to zero point five zero times c. The spaceships shoots a canister towards earth with velocity u prime equals zero point seven five times c. A man stands stationary on earth observing. In part b, the spaceship shoots the canister away from earth with same velocity. In both the cases, the velocity of the ship is v equals 0 point five zero times c toward left.

Strategy

Because the canister and the spaceship are moving at relativistic speeds, we must determine the speed of the canister by an Earth-bound observer using relativistic velocity addition instead of simple velocity addition.

Solution for (a)

  1. Identify the knowns. v= 0.500 c ; u = 0 . 750 c size 12{u rSup { size 8{'} } = - 0 "." "750"c} {}
  2. Identify the unknown. u size 12{u} {}
  3. Choose the appropriate equation. u= v+u 1 + v u c 2
  4. Plug the knowns into the equation.
    u = v+u 1 + v u c 2 = 0.500 c + 0.750 c 1 + ( 0.500 c ) ( 0.750 c ) c 2 = 1.250 c 1 + 0.375 = 0.909 c

Solution for (b)

  1. Identify the knowns. v = 0.500 c ; u = 0.750 c
  2. Identify the unknown. u
  3. Choose the appropriate equation. u = v+u 1 + v u c 2
  4. Plug the knowns into the equation.
    u = v+u 1 + v u c 2 = 0.500 c + ( 0.750 c ) 1 + ( 0.500 c ) ( 0.750 c ) c 2 = 0.250 c 1 0.375 = 0.400 c

Discussion

The minus sign indicates velocity away from the Earth (in the opposite direction from v ), which means the canister is heading towards the Earth in part (a) and away in part (b), as expected. But relativistic velocities do not add as simply as they do classically. In part (a), the canister does approach the Earth faster, but not at the simple sum of 1.250 c . The total velocity is less than you would get classically. And in part (b), the canister moves away from the Earth at a velocity of 0.400 c , which is faster than the −0.250 c size 12{c} {} you would expect classically. The velocities are not even symmetric. In part (a) the canister moves 0.409 c size 12{c} {} faster than the ship relative to the Earth, whereas in part (b) it moves 0.900 c size 12{c} {} slower than the ship.

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask