<< Chapter < Page Chapter >> Page >

Integrated concepts

The problem set for this section involves concepts from this chapter and several others. Physics is most interesting when applied to general situations involving more than a narrow set of physical principles. For example, photons have momentum, hence the relevance of Linear Momentum and Collisions . The following topics are involved in some or all of the problems in this section:

Problem-solving strategy

  1. Identify which physical principles are involved.
  2. Solve the problem using strategies outlined in the text.

[link] illustrates how these strategies are applied to an integrated-concept problem.

Recoil of a dust particle after absorbing a photon

The following topics are involved in this integrated concepts worked example:

Topics
Photons (quantum mechanics)
Linear Momentum

A 550-nm photon (visible light) is absorbed by a 1 . 00-μg size 12{1 "." "00-μg"} {} particle of dust in outer space. (a) Find the momentum of such a photon. (b) What is the recoil velocity of the particle of dust, assuming it is initially at rest?

Strategy Step 1

To solve an integrated-concept problem , such as those following this example, we must first identify the physical principles involved and identify the chapters in which they are found. Part (a) of this example asks for the momentum of a photon , a topic of the present chapter. Part (b) considers recoil following a collision , a topic of Linear Momentum and Collisions .

Strategy Step 2

The following solutions to each part of the example illustrate how specific problem-solving strategies are applied. These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so on.

Solution for (a)

The momentum of a photon is related to its wavelength by the equation:

p = h λ . size 12{p= { {h} over {λ} } } {}

Entering the known value for Planck’s constant h size 12{h} {} and given the wavelength λ size 12{λ} {} , we obtain

p = 6.63 × 10 34 J s 550 × 10 –9 m = 1 . 21 × 10 27 kg m/s . alignl { stack { size 12{p= { {6 "." "63"´"10" rSup { size 8{-"34"} } " J" cdot s} over {5 "." "50"´"10" rSup { size 8{ +- 9} } " m"} } } {} #=1 "." "21"´"10" rSup { size 8{-"27"} } " kg" cdot "m/s" "." {} } } {}

Discussion for (a)

This momentum is small, as expected from discussions in the text and the fact that photons of visible light carry small amounts of energy and momentum compared with those carried by macroscopic objects.

Solution for (b)

Conservation of momentum in the absorption of this photon by a grain of dust can be analyzed using the equation:

p 1 + p 2 = p 1 + p 2 ( F net = 0 ) . size 12{p rSub { size 8{1} } +p rSub { size 8{2} } =p rSub { size 8{1} } '+p rSub { size 8{2} } '" " \( F rSub { size 8{"net"} } =0 \) } {}

The net external force is zero, since the dust is in outer space. Let 1 represent the photon and 2 the dust particle. Before the collision, the dust is at rest (relative to some observer); after the collision, there is no photon (it is absorbed). So conservation of momentum can be written

p 1 = p 2 = mv , size 12{p rSub { size 8{1} } =p rSub { size 8{2} } ' = ital "mv"} {}

where p 1 size 12{p rSub { size 8{1} } } {} is the photon momentum before the collision and p 2 size 12{p rSub { size 8{2} } ' } {} is the dust momentum after the collision. The mass and recoil velocity of the dust are m size 12{m} {} and v size 12{v} {} , respectively. Solving this for v size 12{v} {} , the requested quantity, yields

v = p m , size 12{v= { {p} over {m} } } {}

where p size 12{p} {} is the photon momentum found in part (a). Entering known values (noting that a microgram is 10 9 kg size 12{"10" rSup { size 8{ - 9} } " kg"} {} ) gives

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask