<< Chapter < Page Chapter >> Page >

Test prep for ap courses

Consider a parallel plate capacitor, with no dielectric material, attached to a battery with a fixed voltage. What happens when a dielectric is inserted into the capacitor?

  1. Nothing changes, except now there is a dielectric in the capacitor.
  2. The energy in the system decreases, making it very easy to move the dielectric in.
  3. You have to do work to move the dielectric, increasing the energy in the system.
  4. The reversed polarity destroys the battery.

(c)

Got questions? Get instant answers now!

Consider a parallel plate capacitor with no dielectric material. It was attached to a battery with a fixed voltage to charge up, but now the battery has been disconnected. What happens to the energy of the system and the dielectric material when a dielectric is inserted into the capacitor?

Got questions? Get instant answers now!

What happens to the energy stored in a circuit as you increase the number of capacitors connected in parallel? Series?

  1. increases, increases
  2. increases, decreases
  3. decreases, increases
  4. decreases, decreases

(b)

Got questions? Get instant answers now!

What would the capacitance of a capacitor with the same total internal energy as the car battery in Example 19.1 have to be? Can you explain why we use batteries instead of capacitors for this application?

Got questions? Get instant answers now!

Consider a parallel plate capacitor with metal plates, each of square shape of 1.00 m on a side, separated by 1.00 mm. What is the energy of this capacitor with 3.00×10 3 V applied to it?

  1. 3.98×10 -2 J
  2. 5.08×10 14 J
  3. 1.33×10 -5 J
  4. 1.69×10 11 J

(a)

Got questions? Get instant answers now!

Consider a parallel plate capacitor with metal plates, each of square shape of 1.00 m on a side, separated by 1.00 mm. What is the internal energy stored in this system if the charge on the capacitor is 30.0 µC?

Got questions? Get instant answers now!

Consider a parallel plate capacitor with metal plates, each of square shape of 1.00 m on a side, separated by 1.00 mm. If the plates grow in area while the voltage is held fixed, the capacitance ___ and the stored energy ___.

  1. decreases, decreases
  2. decreases, increases
  3. increases, decreases
  4. increases, increases

(d)

Got questions? Get instant answers now!

Consider a parallel plate capacitor with metal plates, each of square shape of 1.00 m on a side, separated by 1.00 mm. What happens to the energy of this system if the area of the plates increases while the charge remains fixed?

Got questions? Get instant answers now!

Section summary

  • Capacitors are used in a variety of devices, including defibrillators, microelectronics such as calculators, and flash lamps, to supply energy.
  • The energy stored in a capacitor can be expressed in three ways:
    E cap = QV 2 = CV 2 2 = Q 2 2 C , size 12{E rSub { size 8{"cap"} } = { { ital "QV"} over {2} } = { { ital "CV" rSup { size 8{2} } } over {2} } = { {Q rSup { size 8{2} } } over {2C} } } {}
    where Q size 12{Q} {} is the charge, V size 12{V} {} is the voltage, and C size 12{C} {} is the capacitance of the capacitor. The energy is in joules when the charge is in coulombs, voltage is in volts, and capacitance is in farads.

Conceptual questions

How does the energy contained in a charged capacitor change when a dielectric is inserted, assuming the capacitor is isolated and its charge is constant? Does this imply that work was done?

Got questions? Get instant answers now!

What happens to the energy stored in a capacitor connected to a battery when a dielectric is inserted? Was work done in the process?

Got questions? Get instant answers now!

Problems&Exercises

(a) What is the energy stored in the 10.0 μF capacitor of a heart defibrillator charged to 9.00 × 10 3 V ? (b) Find the amount of stored charge.

(a) 405 J

(b) 90.0 mC

Got questions? Get instant answers now!

In open heart surgery, a much smaller amount of energy will defibrillate the heart. (a) What voltage is applied to the 8.00 μF capacitor of a heart defibrillator that stores 40.0 J of energy? (b) Find the amount of stored charge.

(a) 3.16 kV

(b) 25.3 mC

Got questions? Get instant answers now!

A 1 65 µF size 12{1"65 "mF} {} capacitor is used in conjunction with a motor. How much energy is stored in it when 119 V is applied?

Got questions? Get instant answers now!

Suppose you have a 9.00 V battery, a 2.00 μF capacitor, and a 7.40 μF capacitor. (a) Find the charge and energy stored if the capacitors are connected to the battery in series. (b) Do the same for a parallel connection.

(a) 1.42 × 10 −5 C , 6.38 × 10 −5 J

(b) 8.46 × 10 −5 C , 3.81 × 10 −4 J

Got questions? Get instant answers now!

A nervous physicist worries that the two metal shelves of his wood frame bookcase might obtain a high voltage if charged by static electricity, perhaps produced by friction. (a) What is the capacitance of the empty shelves if they have area 1.00 × 10 2 m 2 and are 0.200 m apart? (b) What is the voltage between them if opposite charges of magnitude 2.00 nC are placed on them? (c) To show that this voltage poses a small hazard, calculate the energy stored.

(a) 4 . 43 × 10 12 F size 12{4 "." "43" times "10" rSup { size 8{ - "12"} } " F"} {}

(b) 452 V size 12{"452"" V"} {}

(c) 4 . 52 × 10 7 J size 12{4 "." "52" times "10" rSup { size 8{ - 7} } " J"} {}

Got questions? Get instant answers now!

Show that for a given dielectric material the maximum energy a parallel plate capacitor can store is directly proportional to the volume of dielectric ( Volume = A · d size 12{"Volume="A cdot d} {} ). Note that the applied voltage is limited by the dielectric strength.

Got questions? Get instant answers now!

Construct Your Own Problem

Consider a heart defibrillator similar to that discussed in [link] . Construct a problem in which you examine the charge stored in the capacitor of a defibrillator as a function of stored energy. Among the things to be considered are the applied voltage and whether it should vary with energy to be delivered, the range of energies involved, and the capacitance of the defibrillator. You may also wish to consider the much smaller energy needed for defibrillation during open-heart surgery as a variation on this problem.

Got questions? Get instant answers now!

Unreasonable Results

(a) On a particular day, it takes 9.60 × 10 3 J of electric energy to start a truck’s engine. Calculate the capacitance of a capacitor that could store that amount of energy at 12.0 V. (b) What is unreasonable about this result? (c) Which assumptions are responsible?

(a) 133 F size 12{"133"" F"} {}

(b) Such a capacitor would be too large to carry with a truck. The size of the capacitor would be enormous.

(c) It is unreasonable to assume that a capacitor can store the amount of energy needed.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask