<< Chapter < Page Chapter >> Page >
I = I 0 e t / τ     (turning off). size 12{I=I rSub { size 8{0} } e rSup { size 8{ - t/τ} } } {}

(See [link] (c).) In the first period of time τ = L / R size 12{τ=L/R} {} after the switch is closed, the current falls to 0.368 of its initial value, since I = I 0 e 1 = 0 . 368 I 0 size 12{I=I rSub { size 8{0} } e rSup { size 8{ - 1} } =0 "." "368"I rSub { size 8{0} } } {} . In each successive time τ size 12{τ} {} , the current falls to 0.368 of the preceding value, and in a few multiples of τ size 12{τ} {} , the current becomes very close to zero, as seen in the graph in [link] (c).

Calculating characteristic time and current in an RL Circuit

(a) What is the characteristic time constant for a 7.50 mH inductor in series with a 3.00 Ω resistor? (b) Find the current 5.00 ms after the switch is moved to position 2 to disconnect the battery, if it is initially 10.0 A.

Strategy for (a)

The time constant for an RL circuit is defined by τ = L / R size 12{τ=L/R} {} .

Solution for (a)

Entering known values into the expression for τ size 12{τ} {} given in τ = L / R size 12{τ=L/R} {} yields

τ = L R = 7.50 mH 3.00 Ω = 2.50 ms. size 12{τ= { {L} over {R} } = { {7 "." "50"" mH"} over {3 "." "00 " %OMEGA } } =2 "." "50"" ms"} {}

Discussion for (a)

This is a small but definitely finite time. The coil will be very close to its full current in about ten time constants, or about 25 ms.

Strategy for (b)

We can find the current by using I = I 0 e t / τ size 12{I=I rSub { size 8{0} } e rSup { size 8{ - t/τ} } } {} , or by considering the decline in steps. Since the time is twice the characteristic time, we consider the process in steps.

Solution for (b)

In the first 2.50 ms, the current declines to 0.368 of its initial value, which is

I = 0 . 368 I 0 = ( 0 . 368 ) ( 10.0 A ) = 3 . 68 A at  t = 2 . 50  ms.

After another 2.50 ms, or a total of 5.00 ms, the current declines to 0.368 of the value just found. That is,

I = 0 . 368 I = ( 0 . 368 ) ( 3.68 A ) = 1 . 35  A at  t = 5 . 00  ms. alignl { stack { size 12{ { {I}} sup { ' }=0 "." "368"I= \( 0 "." "368" \) \( 3 "." "68"" A" \) } {} #size 12{" "=1 "." "35"" A at "t=5 "." "00"" ms"} {} } } {}

Discussion for (b)

After another 5.00 ms has passed, the current will be 0.183 A (see [link] ); so, although it does die out, the current certainly does not go to zero instantaneously.

Got questions? Get instant answers now!

In summary, when the voltage applied to an inductor is changed, the current also changes, but the change in current lags the change in voltage in an RL circuit . In Reactance, Inductive and Capacitive , we explore how an RL circuit behaves when a sinusoidal AC voltage is applied.

Section summary

  • When a series connection of a resistor and an inductor—an RL circuit—is connected to a voltage source, the time variation of the current is
    I = I 0 ( 1 e t / τ )     (turning on). size 12{I=I rSub { size 8{0} } \( 1 - e rSup { size 8{ - t/τ} } \) } {}
    where I 0 = V / R size 12{I rSub { size 8{0} } =V/R} {} is the final current.
  • The characteristic time constant τ size 12{τ} {} is τ = L R size 12{τ= { {L} over {R} } } {} , where L is the inductance and R is the resistance.
  • In the first time constant τ size 12{τ} {} , the current rises from zero to 0 . 632 I 0 size 12{0 "." "632"I rSub { size 8{0} } } {} , and 0.632 of the remainder in every subsequent time interval τ size 12{τ} {} .
  • When the inductor is shorted through a resistor, current decreases as
    I = I 0 e t / τ     (turning off). size 12{I=I rSub { size 8{0} } e rSup { size 8{ - t/τ} } } {}
    Here I 0 size 12{I rSub { size 8{0} } } {} is the initial current.
  • Current falls to 0 . 368 I 0 size 12{0 "." "368"I rSub { size 8{0} } } {} in the first time interval τ size 12{τ} {} , and 0.368 of the remainder toward zero in each subsequent time τ size 12{τ} {} .

Problem exercises

If you want a characteristic RL time constant of 1.00 s, and you have a 500 Ω resistor, what value of self-inductance is needed?

500 H

Got questions? Get instant answers now!

Your RL circuit has a characteristic time constant of 20.0 ns, and a resistance of 5.00 MΩ . (a) What is the inductance of the circuit? (b) What resistance would give you a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope?

Got questions? Get instant answers now!

A large superconducting magnet, used for magnetic resonance imaging, has a 50.0 H inductance. If you want current through it to be adjustable with a 1.00 s characteristic time constant, what is the minimum resistance of system?

50.0 Ω

Got questions? Get instant answers now!

Verify that after a time of 10.0 ms, the current for the situation considered in [link] will be 0.183 A as stated.

Got questions? Get instant answers now!

Suppose you have a supply of inductors ranging from 1.00 nH to 10.0 H, and resistors ranging from 0.100 Ω to 1.00 MΩ . What is the range of characteristic RL time constants you can produce by connecting a single resistor to a single inductor?

1 . 00 × 10 –18 s size 12{1 "." "00" times "10" rSup { size 8{"-15"} } " s"} {} to 0.100 s

Got questions? Get instant answers now!

(a) What is the characteristic time constant of a 25.0 mH inductor that has a resistance of 4.00 Ω ? (b) If it is connected to a 12.0 V battery, what is the current after 12.5 ms?

Got questions? Get instant answers now!

What percentage of the final current I 0 flows through an inductor L size 12{L} {} in series with a resistor R size 12{R} {} , three time constants after the circuit is completed?

95.0%

Got questions? Get instant answers now!

The 5.00 A current through a 1.50 H inductor is dissipated by a 2.00 Ω resistor in a circuit like that in [link] with the switch in position 2. (a) What is the initial energy in the inductor? (b) How long will it take the current to decline to 5.00% of its initial value? (c) Calculate the average power dissipated, and compare it with the initial power dissipated by the resistor.

Got questions? Get instant answers now!

(a) Use the exact exponential treatment to find how much time is required to bring the current through an 80.0 mH inductor in series with a 15.0 Ω resistor to 99.0% of its final value, starting from zero. (b) Compare your answer to the approximate treatment using integral numbers of τ size 12{τ} {} . (c) Discuss how significant the difference is.

(a) 24.6 ms

(b) 26.7 ms

(c) 9% difference, which is greater than the inherent uncertainty in the given parameters.

Got questions? Get instant answers now!

(a) Using the exact exponential treatment, find the time required for the current through a 2.00 H inductor in series with a 0.500 Ω resistor to be reduced to 0.100% of its original value. (b) Compare your answer to the approximate treatment using integral numbers of τ size 12{τ} {} . (c) Discuss how significant the difference is.

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask