<< Chapter < Page Chapter >> Page >

Making connections: squirt toy

There is a diagram of a blue syringe with black text and arrows showing measurements. From left to right are the following labels: A red arrow pointing toward the plunger shows 2.2 N above the arrow. In the center of the syringe is 1.0 cm with an arrow pointing up and down to the edges of the barrel. On the far right is 1.5mm pointing to two black lines running from the top and bottom of the syringe opening.

A horizontally oriented squirt toy contains a 1.0-cm-diameter barrel for the water. A 2.2-N force on the plunger forces water down the barrel and into a 1.5-mm-diameter opening at the end of the squirt gun. In addition to the force pushing on the plunger, pressure from the atmosphere is also present at both ends of the gun, pushing the plunger in and also pushing the water back in to the narrow opening at the other end. Assuming that the water is moving very slowly in the barrel, with what speed does it emerge from the toy?

Solution

First, find the cross-sectional areas for each part of the toy. The wider part is

A 1 =   π r 1 2 =   π ( d 1 2 ) 2 =   π ( 0.005 ) 2 = 7.85 × 10 5   m 2

Next, we will find the area of the narrower part of the toy:

A 2 =   π r 2 2 =   π ( d 2 2 ) 2 =   π ( 0.0015 ) 2 = 7.07 × 10 6   m 2

The pressure pushing on the barrel is equal to the sum of the pressure from the atmosphere ( 1.0 atm = 101 , 300 N/m 2 ) and the pressure created by the 2.2-N force.

P 1 = 101 , 300 +   ( Force A 1 )
P 1 = 101 , 300 + ( 2.2   N 7.85 x 10 5   m 2 ) = 129 , 300   N / m 2

The pressure pushing on the smaller end of the toy is simply the pressure from the atmosphere:

P 2 = 101 , 300   N / m 2

Since the gun is oriented horizontally ( h 1 = h 2 ), we can ignore the potential energy term in Bernoulli's equation, so the equation becomes:

P 1 +   1 2 ρ v 1 2 =   P 2 +   1 2 ρ v 2 2

The problem states that the water is moving very slowly in the barrel. That means we can make the approximation that v 1   0 , which we will justify mathematically.

129 , 300 + ( 0.500 ) ( 1000 ) ( 0 ) 2 = 101 , 300 + ( 0.500 ) ( 1000 ) v 2 2
v 2 2 = ( 129 , 300 101 , 300 ) 500  
v 2 2 = ( 129 , 300 101 , 300 ) 500  
v 2 =   7.5 m/s

How accurate is our assumption that the water velocity in the barrel is approximately zero? Check using the continuity equation:

v 1 = ( A 2 A 1 ) v 2 = ( 7.07 × 10 6 7.85 × 10 5 ) ( 7.5 ) = 0.17   m / s

How does the kinetic energy per unit volume term for water in the barrel fit into Bernoulli's equation?

129 , 300 + ( 0.500 ) ( 1000 ) ( 0.17 ) 2 =   101 , 300 + ( 0.500 ) ( 1000 ) ( 7.5 ) 2
129 , 300 + 14 = 101 , 300 + 28 , 000

As you can see, the kinetic energy per unit volume term for water in the barrel is very small (14) compared to the other terms (which are all at least 1000 times larger). Another way to look at this is to consider the ratio of the two terms that represent kinetic energy per unit volume:

K 2 K 1 =   1 2 ρ v 2 2 1 2 ρ v 1 2 =   v 2 2 v 1 2

Remember that from the continuity equation

v 2 v 1 =   A 2 A 1 =   π ( d 2 2 ) 2 π ( d 1 2 ) 2 =   d 2 2 d 1 2

Thus, the ratio of the kinetic energy per unit volume terms depends on the fourth power of the ratio of the diameters:

K 2 K 1 =   ( v 2 v 1 ) 2 =   ( d 2 2 d 1 2 ) 2 =   ( d 2 d 1 ) 4  

In this case, the diameter of the barrel ( d 2 ) is 6.7 times larger than the diameter of the opening at the end of the toy ( d 1 ), which makes the kinetic energy per unit volume term for water in the barrel ( 6.7 ) 4 2000 times smaller. We can usually neglect such small terms in addition or subtraction without a significant loss of accuracy.

Power in fluid flow

Power is the rate at which work is done or energy in any form is used or supplied. To see the relationship of power to fluid flow, consider Bernoulli's equation:

P + 1 2 ρv 2 + ρ gh = constant . size 12{P+ { {1} over {2} } ρv rSup { size 8{2} } +ρ ital "gh"="constant"} {}

All three terms have units of energy per unit volume, as discussed in the previous section. Now, considering units, if we multiply energy per unit volume by flow rate (volume per unit time), we get units of power. That is, ( E / V ) ( V / t ) = E / t size 12{ \( E/V \) \( V/t \) =E/t} {} . This means that if we multiply Bernoulli's equation by flow rate Q size 12{Q} {} , we get power. In equation form, this is

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask