<< Chapter < Page Chapter >> Page >

Making connections: squirt toy

There is a diagram of a blue syringe with black text and arrows showing measurements. From left to right are the following labels: A red arrow pointing toward the plunger shows 2.2 N above the arrow. In the center of the syringe is 1.0 cm with an arrow pointing up and down to the edges of the barrel. On the far right is 1.5mm pointing to two black lines running from the top and bottom of the syringe opening.

A horizontally oriented squirt toy contains a 1.0-cm-diameter barrel for the water. A 2.2-N force on the plunger forces water down the barrel and into a 1.5-mm-diameter opening at the end of the squirt gun. In addition to the force pushing on the plunger, pressure from the atmosphere is also present at both ends of the gun, pushing the plunger in and also pushing the water back in to the narrow opening at the other end. Assuming that the water is moving very slowly in the barrel, with what speed does it emerge from the toy?

Solution

First, find the cross-sectional areas for each part of the toy. The wider part is

A 1 =   π r 1 2 =   π ( d 1 2 ) 2 =   π ( 0.005 ) 2 = 7.85 × 10 5   m 2

Next, we will find the area of the narrower part of the toy:

A 2 =   π r 2 2 =   π ( d 2 2 ) 2 =   π ( 0.0015 ) 2 = 7.07 × 10 6   m 2

The pressure pushing on the barrel is equal to the sum of the pressure from the atmosphere ( 1.0 atm = 101 , 300 N/m 2 ) and the pressure created by the 2.2-N force.

P 1 = 101 , 300 +   ( Force A 1 )
P 1 = 101 , 300 + ( 2.2   N 7.85 x 10 5   m 2 ) = 129 , 300   N / m 2

The pressure pushing on the smaller end of the toy is simply the pressure from the atmosphere:

P 2 = 101 , 300   N / m 2

Since the gun is oriented horizontally ( h 1 = h 2 ), we can ignore the potential energy term in Bernoulli's equation, so the equation becomes:

P 1 +   1 2 ρ v 1 2 =   P 2 +   1 2 ρ v 2 2

The problem states that the water is moving very slowly in the barrel. That means we can make the approximation that v 1   0 , which we will justify mathematically.

129 , 300 + ( 0.500 ) ( 1000 ) ( 0 ) 2 = 101 , 300 + ( 0.500 ) ( 1000 ) v 2 2
v 2 2 = ( 129 , 300 101 , 300 ) 500  
v 2 2 = ( 129 , 300 101 , 300 ) 500  
v 2 =   7.5 m/s

How accurate is our assumption that the water velocity in the barrel is approximately zero? Check using the continuity equation:

v 1 = ( A 2 A 1 ) v 2 = ( 7.07 × 10 6 7.85 × 10 5 ) ( 7.5 ) = 0.17   m / s

How does the kinetic energy per unit volume term for water in the barrel fit into Bernoulli's equation?

129 , 300 + ( 0.500 ) ( 1000 ) ( 0.17 ) 2 =   101 , 300 + ( 0.500 ) ( 1000 ) ( 7.5 ) 2
129 , 300 + 14 = 101 , 300 + 28 , 000

As you can see, the kinetic energy per unit volume term for water in the barrel is very small (14) compared to the other terms (which are all at least 1000 times larger). Another way to look at this is to consider the ratio of the two terms that represent kinetic energy per unit volume:

K 2 K 1 =   1 2 ρ v 2 2 1 2 ρ v 1 2 =   v 2 2 v 1 2

Remember that from the continuity equation

v 2 v 1 =   A 2 A 1 =   π ( d 2 2 ) 2 π ( d 1 2 ) 2 =   d 2 2 d 1 2

Thus, the ratio of the kinetic energy per unit volume terms depends on the fourth power of the ratio of the diameters:

K 2 K 1 =   ( v 2 v 1 ) 2 =   ( d 2 2 d 1 2 ) 2 =   ( d 2 d 1 ) 4  

In this case, the diameter of the barrel ( d 2 ) is 6.7 times larger than the diameter of the opening at the end of the toy ( d 1 ), which makes the kinetic energy per unit volume term for water in the barrel ( 6.7 ) 4 2000 times smaller. We can usually neglect such small terms in addition or subtraction without a significant loss of accuracy.

Power in fluid flow

Power is the rate at which work is done or energy in any form is used or supplied. To see the relationship of power to fluid flow, consider Bernoulli's equation:

P + 1 2 ρv 2 + ρ gh = constant . size 12{P+ { {1} over {2} } ρv rSup { size 8{2} } +ρ ital "gh"="constant"} {}

All three terms have units of energy per unit volume, as discussed in the previous section. Now, considering units, if we multiply energy per unit volume by flow rate (volume per unit time), we get units of power. That is, ( E / V ) ( V / t ) = E / t size 12{ \( E/V \) \( V/t \) =E/t} {} . This means that if we multiply Bernoulli's equation by flow rate Q size 12{Q} {} , we get power. In equation form, this is

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask