<< Chapter < Page Chapter >> Page >
  • 1 Introduction: The Nature of Science and Physics
  • 2 Kinematics
  • 3 Two-Dimensional Kinematics
  • 4 Dynamics: Force and Newton's Laws of Motion
  • 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
  • 6 Gravitation and Uniform Circular Motion
  • 7 Work, Energy, and Energy Resources
  • 8 Linear Momentum and Collisions
  • 9 Statics and Torque
  • 10 Rotational Motion and Angular Momentum
  • 11 Fluid Statics
  • 12 Fluid Dynamics and Its Biological and Medical Applications
  • 13 Temperature, Kinetic Theory, and the Gas Laws
  • 14 Heat and Heat Transfer Methods
  • 15 Thermodynamics
  • 16 Oscillatory Motion and Waves
  • 17 Physics of Hearing
  • 18 Electric Charge and Electric Field
  • 19 Electric Potential and Electric Field
  • 20 Electric Current, Resistance, and Ohm's Law
  • 21 Circuits, Bioelectricity, and DC Instruments
  • 22 Magnetism
  • 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
  • 24 Electromagnetic Waves
  • 25 Geometric Optics
  • 26 Vision and Optical Instruments
  • 27 Wave Optics
  • 28 Special Relativity
  • 29 Introduction to Quantum Physics
  • 30 Atomic Physics
  • 31 Radioactivity and Nuclear Physics
  • 32 Medical Applications of Nuclear Physics
  • 33 Particle Physics
  • 34 Frontiers of Physics
  • Appendix A: Atomic Masses
  • Appendix B: Selected Radioactive Isotopes
  • Appendix C: Useful Information
  • Appendix D: Glossary of Key Symbols and Notation

Pedagogical foundation and features

College Physics for AP ® Courses is organized so that topics are introduced conceptually with a steady progression to precise definitions and analytical applications. The analytical, problem-solving aspect is tied back to the conceptual before moving on to another topic. Each introductory chapter, for example, opens with an engaging photograph relevant to the subject of the chapter and interesting applications that are easy for most students to visualize.

  • Connections for AP ® Courses introduce each chapter and explain how its content addresses the AP ® curriculum.
  • Worked Examples Examples start with problems based on real-life situations, then describe a strategy for solving the problem that emphasizes key concepts. The subsequent detailed mathematical solution also includes a follow-up discussion.
  • Problem-solving Strategies are presented independently and subsequently appear at crucial points in the text where students can benefit most from them.
  • Misconception Alerts address common misconceptions that students may bring to class.
  • Take-Home Investigations provide the opportunity for students to apply or explore what they have learned with a hands-on activity.
  • Real World Connections highlight important concepts and examples in the AP ® framework.
  • Applying the Science Practices includes activities and challenging questions that engage students while they apply the AP ® science practices.
  • Things Great and Small explains macroscopic phenomena (such as air pressure) with submicroscopic phenomena (such as atoms bouncing off of walls).
  • PhET Explorations link students to interactive PHeT physics simulations, developed by the University of Colorado, to help them further explore the physics concepts they have learned about in their book module.

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask