<< Chapter < Page Chapter >> Page >
g = 9 . 80 m/s 2 . size 12{g=9 "." "80 m/s" rSup { size 8{2} } } {}

Although g size 12{g} {} varies from 9 . 78 m/s 2 size 12{9 "." "78 m/s" rSup { size 8{2} } } {} to {} 9 . 83 m/s 2 size 12{9 "." "83 m/s" rSup { size 8{2} } } {} , depending on latitude, altitude, underlying geological formations, and local topography, the average value of 9 . 80 m/s 2 size 12{9 "." "80 m/s" rSup { size 8{2} } } {} will be used in this text unless otherwise specified. The direction of the acceleration due to gravity is downward (towards the center of Earth) . In fact, its direction defines what we call vertical. Note that whether the acceleration a size 12{a} {} in the kinematic equations has the value + g size 12{+g} {} or g size 12{ - g} {} depends on how we define our coordinate system. If we define the upward direction as positive, then a = g = 9 . 80 m/s 2 size 12{a= - g= - 9 "." "80 m/s" rSup { size 8{2} } } {} , and if we define the downward direction as positive, then a = g = 9 . 80 m/s 2 size 12{a=g=9 "." "80 m/s" rSup { size 8{2} } } {} .

One-dimensional motion involving gravity

The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress toward more complex ones. So we start by considering straight up and down motion with no air resistance or friction. These assumptions mean that the velocity (if there is any) is vertical. If the object is dropped, we know the initial velocity is zero. Once the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is one-dimensional and has constant acceleration of magnitude g size 12{g} {} . We will also represent vertical displacement with the symbol y size 12{y} {} and use x size 12{x} {} for horizontal displacement.

Kinematic equations for objects in free-fall where acceleration = - g

v = v 0 gt size 12{v=v rSub { size 8{0} } + ital "gt"} {}
y = y 0 + v 0 t 1 2 gt 2 size 12{y=y rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "gt" rSup { size 8{2} } } {}
v 2 = v 0 2 2 g y y 0 size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2g left (y - y rSub { size 8{0} } right )} {}

Calculating position and velocity of a falling object: a rock thrown upward

A person standing on the edge of a high cliff throws a rock straight up with an initial velocity of 13.0 m/s . The rock misses the edge of the cliff as it falls back to Earth. Calculate the position and velocity of the rock 1.00 s, 2.00 s, and 3.00 s after it is thrown, neglecting the effects of air resistance.

Strategy

Draw a sketch.

Velocity vector arrow pointing up in the positive y direction, labeled v sub 0 equals thirteen point 0 meters per second. Acceleration vector arrow pointing down in the negative y direction, labeled a equals negative 9 point 8 meters per second squared.

We are asked to determine the position y size 12{y} {} at various times. It is reasonable to take the initial position y 0 size 12{y rSub { size 8{0} } } {} to be zero. This problem involves one-dimensional motion in the vertical direction. We use plus and minus signs to indicate direction, with up being positive and down negative. Since up is positive, and the rock is thrown upward, the initial velocity must be positive too. The acceleration due to gravity is downward, so a size 12{a} {} is negative. It is crucial that the initial velocity and the acceleration due to gravity have opposite signs. Opposite signs indicate that the acceleration due to gravity opposes the initial motion and will slow and eventually reverse it.

Since we are asked for values of position and velocity at three times, we will refer to these as y 1 size 12{y rSub { size 8{1} } } {} and v 1 size 12{v rSub { size 8{1} } } {} ; y 2 size 12{y rSub { size 8{2} } } {} and v 2 size 12{v rSub { size 8{2} } } {} ; and y 3 size 12{y rSub { size 8{3} } } {} and v 3 size 12{v rSub { size 8{3} } } {} .

Solution for Position y 1 size 12{y rSub { size 8{1} } } {}

1. Identify the knowns. We know that y 0 = 0 size 12{y rSub { size 8{0} } =0} {} ; v 0 = 13 . 0 m/s size 12{v rSub { size 8{0} } ="13" "." "0 m/s"} {} ; a = g = 9 . 80 m/s 2 size 12{a= - g= - 9 "." "80 m/s" rSup { size 8{2} } } {} ; and t = 1 . 00 s size 12{t=1 "." "00 s"} {} .

2. Identify the best equation to use. We will use y = y 0 + v 0 t + 1 2 at 2 size 12{y=y rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} because it includes only one unknown, y size 12{y} {} (or y 1 size 12{y rSub { size 8{1} } } {} , here), which is the value we want to find.

3. Plug in the known values and solve for y 1 size 12{y rSub { size 8{1} } } {} .

y 1 = 0 + 13 . 0 m/s 1 . 00 s + 1 2 9 . 80 m/s 2 1 . 00 s 2 = 8 . 10 m size 12{y"" lSub { size 8{1} } =0+ left ("13" "." "0 m/s" right ) left (1 "." "00 s" right )+ { {1} over {2} } left ( - 9 "." "80"" m/s" rSup { size 8{2} } right ) left (1 "." "00 s" right ) rSup { size 8{2} } =8 "." "10"`m} {}

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask