<< Chapter < Page Chapter >> Page >
The first part of the picture shows a system in the form of a circle for explanation purposes. The heat entering and work done are represented by bold arrows. A quantity of heat Q in equals forty joules, is shown to enter the system and Q out equals negative twenty five joules is shown to leave the system. The energy of the system in is marked as fifteen joules. At the right-hand side of the circle, a work W in equals negative four joules is shown to be applied on the system and a work W out equals ten joules is shown to leave the system. The energy of the system out is marked as six joules. The second part of the picture shows a system in the form of a circle for explanation purposes. The heat entering and work done are represented by bold arrows. A work of negative one hundred fifty nine is shown to enter the system. The energy in the system is shown as one hundred fifty nine joules. The out energy of the system is one hundred fifty joules. A heat Q out of negative one hundred fifty joules is shown to leave the system as an outward arrow.
Two different processes produce the same change in a system. (a) A total of 15.00 J of heat transfer occurs into the system, while work takes out a total of 6.00 J. The change in internal energy is Δ U = Q W = 9 . 00 J size 12{DU=Q-W=9 "." "00"" J"} {} . (b) Heat transfer removes 150.00 J from the system while work puts 159.00 J into it, producing an increase of 9.00 J in internal energy. If the system starts out in the same state in (a) and (b), it will end up in the same final state in either case—its final state is related to internal energy, not how that energy was acquired.

Applying the science practices: energy in a potato cannon

Plan and design an experiment to measure the total energy out of a potato cannon. How will you measure how much work was done? How will you calculate the energy put in? How can you then estimate how much heat was output? What variables do you need to hold constant over multiple trials for the best results?

The trajectory of the projectile should be measurable and provide a means of calculating the work done. The energy input should be calculable from the type of fuel used. Using the same amount of fuel in each trial would be helpful. The heat output can be estimated by comparing the energy input with the energy required to do the work.

Human metabolism and the first law of thermodynamics

Human metabolism is the conversion of food into heat transfer, work, and stored fat. Metabolism is an interesting example of the first law of thermodynamics in action. We now take another look at these topics via the first law of thermodynamics. Considering the body as the system of interest, we can use the first law to examine heat transfer, doing work, and internal energy in activities ranging from sleep to heavy exercise. What are some of the major characteristics of heat transfer, doing work, and energy in the body? For one, body temperature is normally kept constant by heat transfer to the surroundings. This means Q size 12{Q} {} is negative. Another fact is that the body usually does work on the outside world. This means W size 12{W} {} is positive. In such situations, then, the body loses internal energy, since Δ U = Q W size 12{ΔU=Q - W} {} is negative.

Now consider the effects of eating. Eating increases the internal energy of the body by adding chemical potential energy (this is an unromantic view of a good steak). The body metabolizes all the food we consume. Basically, metabolism is an oxidation process in which the chemical potential energy of food is released. This implies that food input is in the form of work. Food energy is reported in a special unit, known as the Calorie. This energy is measured by burning food in a calorimeter, which is how the units are determined.

In chemistry and biochemistry, one calorie (spelled with a lowercase c) is defined as the energy (or heat transfer) required to raise the temperature of one gram of pure water by one degree Celsius. Nutritionists and weight-watchers tend to use the dietary calorie, which is frequently called a Calorie (spelled with a capital C). One food Calorie is the energy needed to raise the temperature of one kilogram of water by one degree Celsius. This means that one dietary Calorie is equal to one kilocalorie for the chemist, and one must be careful to avoid confusion between the two.

Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask