<< Chapter < Page Chapter >> Page >

How does it work?

To understand how these quark substructures work, let us specifically examine the proton, neutron, and the two pions pictured in [link] before moving on to more general considerations. First, the proton p is composed of the three quarks uud , so that its total charge is + 2 3 q e + 2 3 q e 1 3 q e = q e size 12{+ left ( { {2} over {3} } right )q rSub { size 8{e} } + left ( { {2} over {3} } right )q rSub { size 8{e} } - left ( { {1} over {3} } right )q rSub { size 8{e} } =q rSub { size 8{e} } } {} , as expected. With the spins aligned as in the figure, the proton's intrinsic spin is + 1 2 + 1 2 1 2 = 1 2 size 12{+ left ( { {1} over {2} } right )+ left ( { {1} over {2} } right ) - left ( { {1} over {2} } right )= left ( { {1} over {2} } right )} {} , also as expected. Note that the spins of the up quarks are aligned, so that they would be in the same state except that they have different colors (another quantum number to be elaborated upon a little later). Quarks obey the Pauli exclusion principle. Similar comments apply to the neutron n , which is composed of the three quarks udd . Note also that the neutron is made of charges that add to zero but move internally, producing its well-known magnetic moment. When the neutron β size 12{β rSup { size 8{ - {}} } } {} decays, it does so by changing the flavor of one of its quarks. Writing neutron β size 12{β rSup { size 8{ - {}} } } {} decay in terms of quarks,

n p + β + v - e size 12{n rightarrow p+β rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{e} } } {}   becomes  udd uud + β + v - e size 12{ ital "udd" rightarrow ital "uud"+β rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{e} } } {} .

We see that this is equivalent to a down quark changing flavor to become an up quark:

d u + β + v - e size 12{d rightarrow u+β rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{e} } } {}

Quarks and antiquarks The lower of the ± size 12{ +- {}} {} symbols are the values for antiquarks.
Name Symbol Antiparticle Spin Charge B size 12{B} {} B size 12{B} {} is baryon number, S is strangeness, c size 12{c} {} is charm, b size 12{b} {} is bottomness, t size 12{t} {} is topness. S size 12{S} {} c size 12{c} {} b size 12{b} {} t size 12{t} {} Mass ( GeV / c 2 ) Values are approximate, are not directly observable, and vary with model.
Up u size 12{u} {} u - size 12{ { bar {u}}} {} 1/2 ± 2 3 q e size 12{ +- { {2} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 0 0 0 0.005
Down d size 12{d} {} d - size 12{ { bar {d}}} {} 1/2 1 3 q e size 12{ -+ { {1} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 0 0 0 0.008
Strange s size 12{s} {} s - size 12{ { bar {s}}} {} 1/2 1 3 q e size 12{ -+ { {1} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 1 size 12{ -+ 1} {} 0 0 0 0.50
Charmed c size 12{c} {} c - size 12{ { bar {c}}} {} 1/2 ± 2 3 q e size 12{ +- { {2} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 ± 1 size 12{ +- 1} {} 0 0 1.6
Bottom b size 12{b} {} b - size 12{ { bar {b}}} {} 1/2 1 3 q e size 12{ -+ { {1} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 0 1 size 12{ -+ 1} {} 0 5
Top t size 12{t} {} t - size 12{ { bar {t}}} {} 1/2 ± 2 3 q e size 12{ +- { {2} over {3} } q rSub { size 8{e} } } {} ± 1 3 size 12{ +- { {1} over {3} } } {} 0 0 0 ± 1 size 12{ +- 1} {} 173
Quark composition of selected hadrons These two mesons are different mixtures, but each is its own antiparticle, as indicated by its quark composition.
Particle Quark Composition
Mesons
π + size 12{π rSup { size 8{+{}} } } {} u d - size 12{u { bar {d}}} {}
π size 12{π rSup { size 8{ - {}} } } {} u - d size 12{ { bar {u}}d} {}
π 0 size 12{π rSup { size 8{0} } } {} u u - size 12{u { bar {u}}} {} , d d - size 12{d { bar {d}}} {} mixture These two mesons are different mixtures, but each is its own antiparticle, as indicated by its quark composition.
η 0 size 12{η rSup { size 8{0} } } {} u u - size 12{u { bar {u}}} {} , d d - size 12{d { bar {d}}} {} mixture These two mesons are different mixtures, but each is its own antiparticle, as indicated by its quark composition.
K 0 size 12{K rSup { size 8{0} } } {} d s - size 12{d { bar {s}}} {}
K - 0 size 12{ { bar {K}} rSup { size 8{0} } } {} d - s size 12{ { bar {d}}s} {}
K + size 12{K rSup { size 8{+{}} } } {} u s - size 12{u { bar {s}}} {}
K size 12{K rSup { size 8{ - {}} } } {} u - s size 12{ { bar {u}}s} {}
J / ψ size 12{J/ψ} {} c c - size 12{c { bar {c}}} {}
ϒ b b - size 12{b { bar {b}}} {}
Baryons Antibaryons have the antiquarks of their counterparts. The antiproton p - size 12{ { bar {p}}} {} is u - u - d - size 12{ { bar {u}} { bar {u}} { bar {d}}} {} , for example. , Baryons composed of the same quarks are different states of the same particle. For example, the Δ + size 12{Δ rSup { size 8{+{}} } } {} is an excited state of the proton.
p size 12{p} {} uud size 12{ ital "uud"} {}
n size 12{n} {} udd size 12{ ital "uud"} {}
Δ 0 size 12{Δ rSup { size 8{0} } } {} udd size 12{ ital "uud"} {}
Δ + size 12{Δ rSup { size 8{+{}} } } {} uud size 12{ ital "uud"} {}
Δ size 12{Δ rSup { size 8{ - {}} } } {} ddd size 12{ ital "ddd"} {}
Δ ++ size 12{Δ rSup { size 8{"++"} } } {} uuu size 12{ ital "uuu"} {}
Λ 0 size 12{Λ rSup { size 8{0} } } {} uds size 12{ ital "uds"} {}
Σ 0 size 12{Σ rSup { size 8{0} } } {} uds size 12{ ital "uds"} {}
Σ + size 12{Σ rSup { size 8{+{}} } } {} uus size 12{ ital "uus"} {}
Σ size 12{Σ rSup { size 8{ - {}} } } {} dds size 12{ ital "dds"} {}
Ξ 0 size 12{Ξ rSup { size 8{0} } } {} uss size 12{ ital "uss"} {}
Ξ size 12{Ξ rSup { size 8{ - {}} } } {} dss size 12{ ital "dss"} {}
Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} sss size 12{ ital "sss"} {}

This is an example of the general fact that the weak nuclear force can change the flavor of a quark . By general, we mean that any quark can be converted to any other (change flavor) by the weak nuclear force. Not only can we get d u size 12{d rightarrow u} {} , we can also get u d size 12{u rightarrow d} {} . Furthermore, the strange quark can be changed by the weak force, too, making s u size 12{s rightarrow u} {} and s d size 12{s rightarrow d} {} possible. This explains the violation of the conservation of strangeness by the weak force noted in the preceding section. Another general fact is that the strong nuclear force cannot change the flavor of a quark.

Again, from [link] , we see that the π + size 12{π rSup { size 8{+{}} } } {} meson (one of the three pions) is composed of an up quark plus an antidown quark, or u d - size 12{u { bar {d}}} {} . Its total charge is thus + 2 3 q e + 1 3 q e = q e size 12{+ left ( { {2} over {3} } right )q rSub { size 8{e} } + left ( { {1} over {3} } right )q rSub { size 8{e} } =q rSub { size 8{e} } } {} , as expected. Its baryon number is 0, since it has a quark and an antiquark with baryon numbers + 1 3 1 3 = 0 size 12{+ left ( { {1} over {3} } right ) - left ( { {1} over {3} } right )=0} {} . The π + size 12{π rSup { size 8{+{}} } } {} half-life is relatively long since, although it is composed of matter and antimatter, the quarks are different flavors and the weak force should cause the decay by changing the flavor of one into that of the other. The spins of the u size 12{u} {} and d - size 12{ { bar {d}}} {} quarks are antiparallel, enabling the pion to have spin zero, as observed experimentally. Finally, the π size 12{π rSup { size 8{ - {}} } } {} meson shown in [link] is the antiparticle of the π + size 12{π rSup { size 8{+{}} } } {} meson, and it is composed of the corresponding quark antiparticles. That is, the π + size 12{π rSup { size 8{+{}} } } {} meson is u d - size 12{u { bar {d}}} {} , while the π size 12{π rSup { size 8{ - {}} } } {} meson is u - d size 12{ { bar {u}}d} {} . These two pions annihilate each other quickly, because their constituent quarks are each other's antiparticles.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask