<< Chapter < Page Chapter >> Page >

The already familiar direction of heat transfer from hot to cold is the basis of our first version of the second law of thermodynamics    .

The second law of thermodynamics (first expression)

Heat transfer occurs spontaneously from higher- to lower-temperature bodies but never spontaneously in the reverse direction.

Another way of stating this: It is impossible for any process to have as its sole result heat transfer from a cooler to a hotter object.

Heat engines

Now let us consider a device that uses heat transfer to do work. As noted in the previous section, such a device is called a heat engine, and one is shown schematically in [link] (b). Gasoline and diesel engines, jet engines, and steam turbines are all heat engines that do work by using part of the heat transfer from some source. Heat transfer from the hot object (or hot reservoir) is denoted as Q h size 12{Q rSub { size 8{h} } } {} , while heat transfer into the cold object (or cold reservoir) is Q c size 12{Q rSub { size 8{c} } } {} , and the work done by the engine is W size 12{W} {} . The temperatures of the hot and cold reservoirs are T h size 12{T rSub { size 8{h} } } {} and T c size 12{T rSub { size 8{c} } } {} , respectively.

Part a of the figure shows the spontaneous heat transfer from a hot system to a cold system. The hot reservoir at temperature T sub h is represented by a rectangular section in the top and the cold reservoir at temperature T sub c is shown as a rectangular section at the bottom. Heat is shown to flow from hot reservoir to cold reservoir as shown by a bold arrow pointing downward. Part b of the figure shows a heat engine represented as a circle. The hot reservoir at temperature T sub h is represented by a rectangular section at the top and a cold reservoir at temperature T sub c is shown as a rectangular section at the bottom. Heat Q sub h is transferred out of the hot reservoir, work W is the output equals Q sub h minus Q sub c, and heat Q sub c is the heat transferred into the cold reservoir. All these are shown using bold arrows.
(a) Heat transfer occurs spontaneously from a hot object to a cold one, consistent with the second law of thermodynamics. (b) A heat engine, represented here by a circle, uses part of the heat transfer to do work. The hot and cold objects are called the hot and cold reservoirs. Q h size 12{Q rSub { size 8{h} } } {} is the heat transfer out of the hot reservoir, W size 12{W} {} is the work output, and Q c size 12{Q rSub { size 8{c} } } {} is the heat transfer into the cold reservoir.

Because the hot reservoir is heated externally, which is energy intensive, it is important that the work is done as efficiently as possible. In fact, we would like W size 12{W} {} to equal Q h size 12{Q rSub { size 8{h} } } {} , and for there to be no heat transfer to the environment ( Q c = 0 size 12{Q rSub { size 8{c} } =0} {} ). Unfortunately, this is impossible. The second law of thermodynamics    also states, with regard to using heat transfer to do work (the second expression of the second law):

The second law of thermodynamics (second expression)

It is impossible in any system for heat transfer from a reservoir to completely convert to work in a cyclical process in which the system returns to its initial state.

A cyclical process    brings a system, such as the gas in a cylinder, back to its original state at the end of every cycle. Most heat engines, such as reciprocating piston engines and rotating turbines, use cyclical processes. The second law, just stated in its second form, clearly states that such engines cannot have perfect conversion of heat transfer into work done. Before going into the underlying reasons for the limits on converting heat transfer into work, we need to explore the relationships among W size 12{W} {} , Q h size 12{Q rSub { size 8{h} } } {} , and Q c size 12{Q rSub { size 8{c} } } {} , and to define the efficiency of a cyclical heat engine. As noted, a cyclical process brings the system back to its original condition at the end of every cycle. Such a system's internal energy U is the same at the beginning and end of every cycle—that is, Δ U = 0 size 12{ΔU=0} {} . The first law of thermodynamics states that

Δ U = Q W , size 12{ΔU=Q - W} {}

where Q size 12{Q} {} is the net heat transfer during the cycle ( Q = Q h Q c size 12{Q=Q rSub { size 8{h} } - Q rSub { size 8{c} } } {} ) and W size 12{W} {} is the net work done by the system. Since Δ U = 0 size 12{ΔU=0} {} for a complete cycle, we have

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask