<< Chapter < Page Chapter >> Page >

Getting up to speed: choosing the correct system

A physics professor pushes a cart of demonstration equipment to a lecture hall, as seen in [link] . Her mass is 65.0 kg, the cart’s is 12.0 kg, and the equipment’s is 7.0 kg. Calculate the acceleration produced when the professor exerts a backward force of 150 N on the floor. All forces opposing the motion, such as friction on the cart’s wheels and air resistance, total 24.0 N.

A professor is pushing a cart of demonstration equipment. Two systems are labeled in the figure. System one includes both the professor and cart, and system two only has the cart. She is exerting some force F sub prof toward the right, shown by a vector arrow, and the cart is also pushing her with the same magnitude of force directed toward the left, shown by a vector F sub cart, having same length as F sub prof. The friction force small f is shown by a vector arrow pointing left acting between the wheels of the cart and the floor. The professor is pushing the floor with her feet with a force F sub foot toward the left, shown by a vector arrow. The floor is pushing her feet with a force that has the same magnitude, F sub floor, shown by a vector arrow pointing right that has the same length as the vector F sub foot. A free-body diagram is also shown. For system one, friction force acting toward the left is shown by a vector arrow having a small length, and the force F sub floor is acting toward the right, shown by a vector arrow larger than the length of vector f. In system two, friction force represented by a short vector small f acts toward the left and another vector F sub prof is represented by a vector arrow toward the right. F sub prof is longer than small f.
A professor pushes a cart of demonstration equipment. The lengths of the arrows are proportional to the magnitudes of the forces (except for f size 12{f} {} , since it is too small to draw to scale). Different questions are asked in each example; thus, the system of interest must be defined differently for each. System 1 is appropriate for this example, since it asks for the acceleration of the entire group of objects. Only F floor size 12{F rSub { size 8{"floor"} } } {} and f size 12{f} {} are external forces acting on System 1 along the line of motion. All other forces either cancel or act on the outside world. System 2 is chosen for [link] so that F prof size 12{F rSub { size 8{"prof"} } } {} will be an external force and enter into Newton’s second law. Note that the free-body diagrams, which allow us to apply Newton’s second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1 in [link] . The professor pushes backward with a force F foot size 12{F rSub { size 8{"foot"} } } {} of 150 N. According to Newton’s third law, the floor exerts a forward reaction force F floor size 12{F rSub { size 8{"floor"} } } {} of 150 N on System 1. Because all motion is horizontal, we can assume there is no net force in the vertical direction. The problem is therefore one-dimensional along the horizontal direction. As noted, f size 12{f} {} opposes the motion and is thus in the opposite direction of F floor size 12{F rSub { size 8{"floor"} } } {} . Note that we do not include the forces F prof size 12{F rSub { size 8{"prof"} } } {} or F cart size 12{F rSub { size 8{"cart"} } } {} because these are internal forces, and we do not include F foot size 12{F rSub { size 8{"foot"} } } {} because it acts on the floor, not on the system. There are no other significant forces acting on System 1. If the net external force can be found from all this information, we can use Newton’s second law to find the acceleration as requested. See the free-body diagram in the figure.

Solution

Newton’s second law is given by

a = F net m size 12{a = { {F rSub { size 8{"net"} } } over {m} } } {} .

The net external force on System 1 is deduced from [link] and the discussion above to be

F net = F floor f = 150 N 24 . 0 N = 126 N size 12{F rSub { size 8{"net"} } = F rSub { size 8{"floor"} } -f ="150 N"-"24" "." "0 N"="126 N"} {} .

The mass of System 1 is

m = ( 65 . 0 + 12 . 0 + 7 . 0 ) kg = 84 kg size 12{m = \( "65" "." "0 "+" 12" "." "0 "+" 7" "." 0 \) " kg "=" 84 kg"} {} .

These values of F net size 12{F} {} and m size 12{m} {} produce an acceleration of

a = F net m , a = 1 26 N 84 kg = 1 . 5 m/s 2 . alignl { stack { size 12{a= { {F rSub { size 8{"net"} } } over {m} } ,} {} #a = { {1"26 N"} over {"84"" kg"} } =" 1" "." "5 m/s" rSup { size 8{2} } "." {} } } {}

Discussion

None of the forces between components of System 1, such as between the professor’s hands and the cart, contribute to the net external force because they are internal to System 1. Another way to look at this is to note that forces between components of a system cancel because they are equal in magnitude and opposite in direction. For example, the force exerted by the professor on the cart results in an equal and opposite force back on her. In this case both forces act on the same system and, therefore, cancel. Thus internal forces (between components of a system) cancel. Choosing System 1 was crucial to solving this problem.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask