<< Chapter < Page Chapter >> Page >

What is BE / A size 12{ {"BE"} slash {A} } {} For an alpha particle?

Calculate the binding energy per nucleon of 4 He size 12{"" lSup { size 8{4} } "He"} {} , the α size 12{α} {} particle.

Strategy

To find BE / A , we first find BE using the Equation BE = { [ Zm ( 1 H ) + Nm n ] m ( A X ) } c 2 and then divide by A . This is straightforward once we have looked up the appropriate atomic masses in [link] .

Solution

The binding energy for a nucleus is given by the equation

BE = { [ Zm ( 1 H ) + Nm n ] m ( A X ) } c 2 .

For 4 He size 12{"" lSup { size 8{4} } "He"} {} , we have Z = N = 2 size 12{Z=N=2} {} ; thus,

BE = { [ 2 m ( 1 H ) + 2 m n ] m ( 4 He ) } c 2 .

[link] gives these masses as m ( 4 He ) = 4.002602 u , m ( 1 H ) = 1.007825 u , and m n = 1.008665 u size 12{m rSub { size 8{n} } =0 "." "008665"`" u"} {} . Thus,

BE = ( 0 . 030378 u ) c 2 . size 12{"BE"= \( 0 "." "030378 u" \) c rSup { size 8{2} } } {}

Noting that 1 u = 931 . 5 MeV/ c 2 size 12{"1u"="931" "." "5 MeV/"c rSup { size 8{2} } } {} , we find

BE = ( 0.030378 ) ( 931 . 5 MeV/ c 2 ) c 2 = 28.3 MeV . size 12{"BE"= \( 0 "." "030378" \) \( "931" "." "5 MeV/"c rSup { size 8{2} } \) c rSup { size 8{2} } ="28" "." 3" MeV"} {}

Since A = 4 size 12{A=4} {} , we see that BE / A size 12{ {"BE"} slash {A} } {} is this number divided by 4, or

BE / A = 7.07 MeV/nucleon . size 12{"BE"/A=7 "." "07"" MeV/nucleon"} {}

Discussion

This is a large binding energy per nucleon compared with those for other low-mass nuclei, which have BE / A 3 MeV/nucleon . This indicates that 4 He is tightly bound compared with its neighbors on the chart of the nuclides. You can see the spike representing this value of BE / A for 4 He on the graph in [link] . This is why 4 He is stable. Since 4 He is tightly bound, it has less mass than other A = 4 nuclei and, therefore, cannot spontaneously decay into them. The large binding energy also helps to explain why some nuclei undergo α decay. Smaller mass in the decay products can mean energy release, and such decays can be spontaneous. Further, it can happen that two protons and two neutrons in a nucleus can randomly find themselves together, experience the exceptionally large nuclear force that binds this combination, and act as a 4 He unit within the nucleus, at least for a while. In some cases, the 4 He escapes, and α decay has then taken place.

Got questions? Get instant answers now!

There is more to be learned from nuclear binding energies. The general trend in BE / A size 12{"BE"/A} {} is fundamental to energy production in stars, and to fusion and fission energy sources on Earth, for example. This is one of the applications of nuclear physics covered in Medical Applications of Nuclear Physics . The abundance of elements on Earth, in stars, and in the universe as a whole is related to the binding energy of nuclei and has implications for the continued expansion of the universe.

Problem-solving strategies

For reaction and binding energies and activity calculations in nuclear physics

  1. Identify exactly what needs to be determined in the problem (identify the unknowns) . This will allow you to decide whether the energy of a decay or nuclear reaction is involved, for example, or whether the problem is primarily concerned with activity (rate of decay).
  2. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
  3. For reaction and binding-energy problems, we use atomic rather than nuclear masses. Since the masses of neutral atoms are used, you must count the number of electrons involved. If these do not balance (such as in β + size 12{β rSup { size 8{+{}} } } {} decay), then an energy adjustment of 0.511 MeV per electron must be made. Also note that atomic masses may not be given in a problem; they can be found in tables.
  4. For problems involving activity, the relationship of activity to half-life, and the number of nuclei given in the equation R = 0.693 N t 1 / 2 size 12{R= { {1 "." "693"N} over {t rSub { size 8{1/2} } } } } {} can be very useful. Owing to the fact that number of nuclei is involved, you will also need to be familiar with moles and Avogadro’s number.
  5. Perform the desired calculation; keep careful track of plus and minus signs as well as powers of 10.
  6. Check the answer to see if it is reasonable: Does it make sense? Compare your results with worked examples and other information in the text. (Heeding the advice in Step 5 will also help you to be certain of your result.) You must understand the problem conceptually to be able to determine whether the numerical result is reasonable.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask