<< Chapter < Page Chapter >> Page >

The force constant     k size 12{k} {} is related to the rigidity (or stiffness) of a system—the larger the force constant, the greater the restoring force, and the stiffer the system. The units of k size 12{k} {} are newtons per meter (N/m). For example, k size 12{k} {} is directly related to Young’s modulus when we stretch a string. [link] shows a graph of the absolute value of the restoring force versus the displacement for a system that can be described by Hooke’s law—a simple spring in this case. The slope of the graph equals the force constant k size 12{k} {} in newtons per meter. A common physics laboratory exercise is to measure restoring forces created by springs, determine if they follow Hooke’s law, and calculate their force constants if they do.

The given figure a is the graph of restoring force versus displacement. The displacement is given by x in meters along x axis, with scales from zero to point zero five zero, then to point one zero, then forward. The restoring force is given by F in unit newton along y axis, with scales from zero to two point zero to four point zero to forward. The graph line starts from zero and goes to upward to point where x is greater than point one zero and F is greater than four point zero with intersection dots at equal distances on the slope line. The slope is depicted by K which is given by rise along y-axis upon run along x axis . The values of mass in kilogram, weight in newtons, and displacement in meters are given along with the graph in a tabular format. In the figure b a horizontal weight bar is shown with three weight measuring springs tied to its lower part, hanging in the downward vertical direction. The first bar has no mass hanging through it, showing zero displacement, as x is equal to zero. It is the least stretched spring downward. The second spring has mass m one tied to it which exerts a force w one, on the spring, which causes displacement in the spring shown here to be x one. Similarly, the third spring is most stretched downward with a mass m two hanging through it with force w two and displacement x two. The values of mass in kg, weight in newtons and displacement in meters are given with the graph in a tabular format.
(a) A graph of absolute value of the restoring force versus displacement is displayed. The fact that the graph is a straight line means that the system obeys Hooke’s law. The slope of the graph is the force constant k size 12{k} {} . (b) The data in the graph were generated by measuring the displacement of a spring from equilibrium while supporting various weights. The restoring force equals the weight supported, if the mass is stationary.

How stiff are car springs?

The figure shows the left side of a hatchback car’s back area, showing the font of its rear wheel. There is an arrow on road pointing its head toward this wheel.
The mass of a car increases due to the introduction of a passenger. This affects the displacement of the car on its suspension system. (credit: exfordy on Flickr)

What is the force constant for the suspension system of a car that settles 1.20 cm when an 80.0-kg person gets in?

Strategy

Consider the car to be in its equilibrium position x = 0 size 12{x=0} {} before the person gets in. The car then settles down 1.20 cm, which means it is displaced to a position x = 1 . 20 × 10 2 m size 12{x= - 1 "." "20" times "10" rSup { size 8{ - 2} } m} {} . At that point, the springs supply a restoring force F size 12{F} {} equal to the person’s weight w = mg = 80 . 0 kg 9 . 80 m/s 2 = 784 N size 12{w= ital "mg"= left ("80" "." 0`"kg" right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right )="784"`N} {} . We take this force to be F size 12{F} {} in Hooke’s law. Knowing F size 12{F} {} and x size 12{x} {} , we can then solve the force constant k size 12{k} {} .

Solution

  1. Solve Hooke’s law, F = kx size 12{F= - ital "kx"} {} , for k size 12{k} {} :
    k = F x . size 12{k= - { {F} over {x} } } {}

    Substitute known values and solve k size 12{k} {} :

    k = 784 N 1 . 20 × 10 2 m = 6 . 53 × 10 4 N/m . alignl { stack { size 12{k= - { {"784"" N"} over { - 1 "." "20" times "10" rSup { size 8{ - 2} } " m"} } } {} #```=6 "." "53" times "10" rSup { size 8{4} } " N/m" {} } } {}

Discussion

Note that F size 12{F} {} and x size 12{x} {} have opposite signs because they are in opposite directions—the restoring force is up, and the displacement is down. Also, note that the car would oscillate up and down when the person got in if it were not for damping (due to frictional forces) provided by shock absorbers. Bouncing cars are a sure sign of bad shock absorbers.

Got questions? Get instant answers now!

Energy in hooke’s law of deformation

In order to produce a deformation, work must be done. That is, a force must be exerted through a distance, whether you pluck a guitar string or compress a car spring. If the only result is deformation, and no work goes into thermal, sound, or kinetic energy, then all the work is initially stored in the deformed object as some form of potential energy. The potential energy stored in a spring is PE el = 1 2 kx 2 size 12{"PE" rSub { size 8{"el"} } = { {1} over {2} } ital "kx" rSup { size 8{2} } } {} . Here, we generalize the idea to elastic potential energy for a deformation of any system that can be described by Hooke’s law. Hence,

PE el = 1 2 kx 2 , size 12{"PE" size 8{"el"}= { {1} over {2} } ital "kx" rSup { size 8{2} } } {}

where PE el size 12{"PE" rSub { size 8{"el"} } } {} is the elastic potential energy    stored in any deformed system that obeys Hooke’s law and has a displacement x size 12{x} {} from equilibrium and a force constant k size 12{k} {} .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask