<< Chapter < Page Chapter >> Page >
Part a shows a circuit with a cell of e m f script E connected in series with a resistor R, a capacitor C, and a switch to close the circuit. The current is shown flowing in a clockwise direction. The capacitor plates are shown to have a charge positive q and negative q respectively. Part b shows a graph of the variation of voltage of the capacitor with time. The voltage is plotted along the vertical axis and the time is along the horizontal axis. The graph shows a smooth upward rising curve which approaches a maximum and flattens out at maximum voltage equal to e m f script E over time.
(a) An RC size 12{ ital "RC"} {} circuit with an initially uncharged capacitor. Current flows in the direction shown (opposite of electron flow) as soon as the switch is closed. Mutual repulsion of like charges in the capacitor progressively slows the flow as the capacitor is charged, stopping the current when the capacitor is fully charged and Q = C emf size 12{Q=C cdot "emf"} {} . (b) A graph of voltage across the capacitor versus time, with the switch closing at time t = 0 size 12{t=0} {} . (Note that in the two parts of the figure, the capital script E stands for emf, q stands for the charge stored on the capacitor, and τ is the RC time constant.)

Voltage on the capacitor is initially zero and rises rapidly at first, since the initial current is a maximum. [link] (b) shows a graph of capacitor voltage versus time ( t size 12{t} {} ) starting when the switch is closed at t = 0 size 12{t=0} {} . The voltage approaches emf asymptotically, since the closer it gets to emf the less current flows. The equation for voltage versus time when charging a capacitor C size 12{C} {} through a resistor R size 12{R} {} , derived using calculus, is

V = emf ( 1 e t / RC ) (charging), size 12{V="emf" \( 1 - e rSup { size 8{ - t/ ital "RC"} } \) } {}

where V size 12{V} {} is the voltage across the capacitor, emf is equal to the emf of the DC voltage source, and the exponential e = 2.718 … is the base of the natural logarithm. Note that the units of RC size 12{ ital "RC"} {} are seconds. We define

τ = RC , size 12{τ= ital "RC"} {}

where τ size 12{τ} {} (the Greek letter tau) is called the time constant for an RC size 12{ ital "RC"} {} circuit. As noted before, a small resistance R size 12{R} {} allows the capacitor to charge faster. This is reasonable, since a larger current flows through a smaller resistance. It is also reasonable that the smaller the capacitor C size 12{C} {} , the less time needed to charge it. Both factors are contained in τ = RC size 12{τ= ital "RC"} {} .

More quantitatively, consider what happens when t = τ = RC size 12{t=τ= ital "RC"} {} . Then the voltage on the capacitor is

V = emf 1 e 1 = emf 1 0 . 368 = 0 . 632 emf . size 12{V="emf" left (1 - e rSup { size 8{ - 1} } right )="emf" left (1 - 0 "." "368" right )=0 "." "632" cdot "emf"} {}

This means that in the time τ = RC size 12{τ= ital "RC"} {} , the voltage rises to 0.632 of its final value. The voltage will rise 0.632 of the remainder in the next time τ size 12{τ} {} . It is a characteristic of the exponential function that the final value is never reached, but 0.632 of the remainder to that value is achieved in every time, τ size 12{τ} {} . In just a few multiples of the time constant τ size 12{τ} {} , then, the final value is very nearly achieved, as the graph in [link] (b) illustrates.

Discharging a capacitor

Discharging a capacitor through a resistor proceeds in a similar fashion, as [link] illustrates. Initially, the current is I 0 = V 0 R size 12{I rSub { size 8{0} } = { {V rSub { size 8{0} } } over {R} } } {} , driven by the initial voltage V 0 size 12{V rSub { size 8{0} } } {} on the capacitor. As the voltage decreases, the current and hence the rate of discharge decreases, implying another exponential formula for V size 12{V} {} . Using calculus, the voltage V size 12{V} {} on a capacitor C size 12{C} {} being discharged through a resistor R size 12{R} {} is found to be

V = V 0 e t / RC (discharging). size 12{V=`V"" lSub { size 8{0} } `e rSup { size 8{ - t/ ital "RC"} } } {}
Part a shows a circuit with a capacitor C connected in series with a resistor R and a switch to close the circuit. The current is shown flowing in a counterclockwise direction. The capacitor plates are shown to have a charge positive q and negative q respectively. Part b shows a graph of the variation of voltage across the capacitor with time. The voltage is plotted along the vertical axis and the time is along the horizontal axis. The graph shows a smooth downward falling curve which approaches a minimum and flattens out close to zero over time.
(a) Closing the switch discharges the capacitor C size 12{C} {} through the resistor R size 12{R} {} . Mutual repulsion of like charges on each plate drives the current. (b) A graph of voltage across the capacitor versus time, with V = V 0 size 12{V=V rSub { size 8{0} } } {} at t = 0 . The voltage decreases exponentially, falling a fixed fraction of the way to zero in each subsequent time constant τ size 12{τ} {} .

The graph in [link] (b) is an example of this exponential decay. Again, the time constant is τ = RC size 12{τ= ital "RC"} {} . A small resistance R size 12{R} {} allows the capacitor to discharge in a small time, since the current is larger. Similarly, a small capacitance requires less time to discharge, since less charge is stored. In the first time interval τ = RC size 12{τ= ital "RC"} {} after the switch is closed, the voltage falls to 0.368 of its initial value, since V = V 0 e 1 = 0 . 368 V 0 size 12{V=V rSub { size 8{0} } cdot e rSup { size 8{ - 1} } =0 "." "368"V rSub { size 8{0} } } {} .

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask