<< Chapter < Page Chapter >> Page >

Calculating the kinetic energy of a package

Suppose a 30.0-kg package on the roller belt conveyor system in [link] is moving at 0.500 m/s. What is its kinetic energy?

Strategy

Because the mass m and speed v are given, the kinetic energy can be calculated from its definition as given in the equation KE = 1 2 mv 2 size 12{"KE"= { {1} over {2} } ital "mv" rSup { size 8{2} } } {} .

Solution

The kinetic energy is given by

KE = 1 2 mv 2 . size 12{"KE"= { {1} over {2} } ital "mv" rSup { size 8{2} } "." } {}

Entering known values gives

KE = 0 . 5 ( 30.0 kg ) ( 0.500 m/s ) 2 , size 12{"KE"=0 "." 5 \( "30" "." 0" kg" \) \( 0 "." "500"" m/s" \) rSup { size 8{2} } ,} {}

which yields

KE = 3.75 kg m 2 /s 2 = 3.75 J. size 12{"KE"=3 "." "75"`"kg" cdot m rSup { size 8{2} } "/s" rSup { size 8{2} } =3 "." "75"`J "." } {}

Discussion

Note that the unit of kinetic energy is the joule, the same as the unit of work, as mentioned when work was first defined. It is also interesting that, although this is a fairly massive package, its kinetic energy is not large at this relatively low speed. This fact is consistent with the observation that people can move packages like this without exhausting themselves.

Got questions? Get instant answers now!

Real world connections: center of mass

Suppose we have two experimental carts, of equal mass, latched together on a track with a compressed spring between them. When the latch is released, the spring does 10 J of work on the carts (we’ll see how in a couple of sections). The carts move relative to the spring, which is the center of mass of the system. However, the center of mass stays fixed. How can we consider the kinetic energy of this system?

By the work-energy theorem, the work done by the spring on the carts must turn into kinetic energy. So this system has 10 J of kinetic energy. The total kinetic energy of the system is the kinetic energy of the center of mass of the system relative to the fixed origin plus the kinetic energy of each cart relative to the center of mass. We know that the center of mass relative to the fixed origin does not move, and therefore all of the kinetic energy must be distributed among the carts relative to the center of mass. Since the carts have equal mass, they each receive an equal amount of kinetic energy, so each cart has 5.0 J of kinetic energy.

In our example, the forces between the spring and each cart are internal to the system. According to Newton’s third law, these internal forces will cancel since they are equal and opposite in direction. However, this does not imply that these internal forces will not do work. Thus, the change in kinetic energy of the system is caused by work done by the force of the spring, and results in the motion of the two carts relative to the center of mass.

Determining the work to accelerate a package

Suppose that you push on the 30.0-kg package in [link] with a constant force of 120 N through a distance of 0.800 m, and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work done by each force that contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force, friction, and the displacement are all horizontal. (See [link] .) As expected, the net work is the net force times distance.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask