<< Chapter < Page Chapter >> Page >
0 = Q W , size 12{0=Q - W} {}

so that

W = Q . size 12{W=Q} {}

Thus the net work done by the system equals the net heat transfer into the system, or

W = Q h Q c (cyclical process), size 12{W=Q rSub { size 8{h} } - Q rSub { size 8{c} } } {}

just as shown schematically in [link] (b). The problem is that in all processes, there is some heat transfer Q c size 12{Q rSub { size 8{c} } } {} to the environment—and usually a very significant amount at that.

In the conversion of energy to work, we are always faced with the problem of getting less out than we put in. We define conversion efficiency Eff size 12{ ital "Eff"} {} to be the ratio of useful work output to the energy input (or, in other words, the ratio of what we get to what we spend). In that spirit, we define the efficiency of a heat engine to be its net work output W size 12{W} {} divided by heat transfer to the engine Q h size 12{Q rSub { size 8{h} } } {} ; that is,

Eff = W Q h . size 12{ ital "Eff"= { {W} over {Q rSub { size 8{h} } } } } {}

Since W = Q h Q c size 12{W=Q rSub { size 8{h} } -Q rSub { size 8{c} } } {} in a cyclical process, we can also express this as

Eff = Q h Q c Q h = 1 Q c Q h (cyclical process), size 12{ ital "Eff"= { {Q rSub { size 8{h} } - Q rSub { size 8{c} } } over {Q rSub { size 8{h} } } } =1 - { {Q rSub { size 8{c} } } over {Q rSub { size 8{h} } } } } {}

making it clear that an efficiency of 1, or 100%, is possible only if there is no heat transfer to the environment ( Q c = 0 size 12{Q rSub { size 8{c} } =0} {} ). Note that all Q size 12{Q} {} s are positive. The direction of heat transfer is indicated by a plus or minus sign. For example, Q c size 12{Q rSub { size 8{c} } } {} is out of the system and so is preceded by a minus sign.

Daily work done by a coal-fired power station, its efficiency and carbon dioxide emissions

A coal-fired power station is a huge heat engine. It uses heat transfer from burning coal to do work to turn turbines, which are used to generate electricity. In a single day, a large coal power station has 2 . 50 × 10 14 J size 12{2 "." "50" times "10" rSup { size 8{"14"} } J} {} of heat transfer from coal and 1 . 48 × 10 14 J size 12{1 "." "48" times "10" rSup { size 8{"14"} } J} {} of heat transfer into the environment. (a) What is the work done by the power station? (b) What is the efficiency of the power station? (c) In the combustion process, the following chemical reaction occurs: C + O 2 CO 2 size 12{C+O rSub { size 8{2} } rightarrow "CO" rSub { size 8{2} } } {} . This implies that every 12 kg of coal puts 12 kg + 16 kg + 16 kg = 44 kg of carbon dioxide into the atmosphere. Assuming that 1 kg of coal can provide 2 . 5 × 10 6 J size 12{2 "." 5 times "10" rSup { size 8{6} } J} {} of heat transfer upon combustion, how much CO 2 size 12{"CO" rSub { size 8{2} } } {} is emitted per day by this power plant?

Strategy for (a)

We can use W = Q h Q c size 12{W=Q rSub { size 8{h} } - Q rSub { size 8{c} } } {} to find the work output W size 12{W} {} , assuming a cyclical process is used in the power station. In this process, water is boiled under pressure to form high-temperature steam, which is used to run steam turbine-generators, and then condensed back to water to start the cycle again.

Solution for (a)

Work output is given by:

W = Q h Q c . size 12{W=Q rSub { size 8{h} } - Q rSub { size 8{c} } } {}

Substituting the given values:

W = 2 . 50 × 10 14 J 1 . 48 × 10 14 J = 1 . 02 × 10 14 J . alignl { stack { size 12{W=2 "." "50"´"10" rSup { size 8{"14"} } " J" +- 1 "." "48"´"10" rSup { size 8{"14"} } " J"} {} #=1 "." "02"´"10" rSup { size 8{"14"} } " J" "." {} } } {}

Strategy for (b)

The efficiency can be calculated with Eff = W Q h size 12{ ital "Eff"= { {W} over {Q rSub { size 8{h} } } } } {} since Q h size 12{Q rSub { size 8{h} } } {} is given and work W size 12{W} {} was found in the first part of this example.

Solution for (b)

Efficiency is given by: Eff = W Q h size 12{ ital "Eff"= { {W} over {Q rSub { size 8{h} } } } } {} . The work W was just found to be 1.02 × 10 14 J , and Q h size 12{Q rSub { size 8{h} } } {} is given, so the efficiency is

Eff = 1 . 02 × 10 14 J 2 . 50 × 10 14 J = 0 . 408 , or  40 . 8% alignl { stack { size 12{ ital "Eff"= { {1 "." "02" times "10" rSup { size 8{"14"} } J} over {2 "." "50" times "10" rSup { size 8{"14"} } J} } } {} #=0 "." "408"", or ""40" "." 8% {} } } {}

Strategy for (c)

The daily consumption of coal is calculated using the information that each day there is 2 . 50 × 10 14 J size 12{2 "." "50"´"10" rSup { size 8{"14"} } " J"} {} of heat transfer from coal. In the combustion process, we have C + O 2 CO 2 size 12{C+O rSub { size 8{2} } rightarrow "CO" rSub { size 8{2} } } {} . So every 12 kg of coal puts 12 kg + 16 kg + 16 kg = 44 kg of CO 2 size 12{"CO" rSub { size 8{2} } } {} into the atmosphere.

Solution for (c)

The daily coal consumption is

2 . 50 × 10 14 J 2 . 50 × 10 6 J/kg = 1 . 0 × 10 8 kg. size 12{ { {2 "." "50"´"10" rSup { size 8{"14"} } " J"} over {2 "." "50"´"10" rSup { size 8{6} } " J/kg"} } =1 "." 0´"10" rSup { size 8{7} } " J/kg"} {}

Assuming that the coal is pure and that all the coal goes toward producing carbon dioxide, the carbon dioxide produced per day is

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask