<< Chapter < Page Chapter >> Page >

There is another consequence of the uncertainty principle for energy and time. If energy is uncertain by Δ E size 12{ΔE} {} , then conservation of energy can be violated by Δ E size 12{ΔE} {} for a time Δ t size 12{Δt} {} . Neither the physicist nor nature can tell that conservation of energy has been violated, if the violation is temporary and smaller than the uncertainty in energy. While this sounds innocuous enough, we shall see in later chapters that it allows the temporary creation of matter from nothing and has implications for how nature transmits forces over very small distances.

Finally, note that in the discussion of particles and waves, we have stated that individual measurements produce precise or particle-like results. A definite position is determined each time we observe an electron, for example. But repeated measurements produce a spread in values consistent with wave characteristics. The great theoretical physicist Richard Feynman (1918–1988) commented, “What there are, are particles.” When you observe enough of them, they distribute themselves as you would expect for a wave phenomenon. However, what there are as they travel we cannot tell because, when we do try to measure, we affect the traveling.

Section summary

  • Matter is found to have the same interference characteristics as any other wave.
  • There is now a probability distribution for the location of a particle rather than a definite position.
  • Another consequence of the wave character of all particles is the Heisenberg uncertainty principle, which limits the precision with which certain physical quantities can be known simultaneously. For position and momentum, the uncertainty principle is Δ x Δ p h size 12{ΔxΔp>= { {h} over {4π} } } {} , where Δ x size 12{Δx} {} is the uncertainty in position and Δ p size 12{Δp} {} is the uncertainty in momentum.
  • For energy and time, the uncertainty principle is Δ E Δ t h size 12{ΔEΔt>= { {h} over {4π} } } {} where Δ E size 12{ΔE} {} is the uncertainty in energy and Δ t size 12{Δt} {} is the uncertainty in time.
  • These small limits are fundamentally important on the quantum-mechanical scale.

Conceptual questions

What is the Heisenberg uncertainty principle? Does it place limits on what can be known?

Got questions? Get instant answers now!

Problems&Exercises

(a) If the position of an electron in a membrane is measured to an accuracy of 1 . 00 μm size 12{1 "." "00 μm"} {} , what is the electron’s minimum uncertainty in velocity? (b) If the electron has this velocity, what is its kinetic energy in eV? (c) What are the implications of this energy, comparing it to typical molecular binding energies?

(a) 57.9 m/s

(b) 9 . 55 × 10 9 eV size 12{9 "." "55" times "10" rSup { size 8{ - 9} } " eV"} {}

(c) From [link] , we see that typical molecular binding energies range from about 1eV to 10 eV, therefore the result in part (b) is approximately 9 orders of magnitude smaller than typical molecular binding energies.

Got questions? Get instant answers now!

(a) If the position of a chlorine ion in a membrane is measured to an accuracy of 1 . 00 μm size 12{1 "." "00 μm"} {} , what is its minimum uncertainty in velocity, given its mass is 5 . 86 × 10 26 kg size 12{5 "." "86" times "10" rSup { size 8{ - "26"} } " kg"} {} ? (b) If the ion has this velocity, what is its kinetic energy in eV, and how does this compare with typical molecular binding energies?

Got questions? Get instant answers now!

Suppose the velocity of an electron in an atom is known to an accuracy of 2 . 0 × 10 3 m/s size 12{2 "." 0 times "10" rSup { size 8{3} } " m/s"} {} (reasonably accurate compared with orbital velocities). What is the electron’s minimum uncertainty in position, and how does this compare with the approximate 0.1-nm size of the atom?

29 nm,

290 times greater

Got questions? Get instant answers now!

The velocity of a proton in an accelerator is known to an accuracy of 0.250% of the speed of light. (This could be small compared with its velocity.) What is the smallest possible uncertainty in its position?

Got questions? Get instant answers now!

A relatively long-lived excited state of an atom has a lifetime of 3.00 ms. What is the minimum uncertainty in its energy?

1 . 10 × 10 13 eV size 12{1 "." "10" times "10" rSup { size 8{ - "13"} } " eV"} {}

Got questions? Get instant answers now!

(a) The lifetime of a highly unstable nucleus is 10 20 s size 12{"10" rSup { size 8{ - "20"} } " s"} {} . What is the smallest uncertainty in its decay energy? (b) Compare this with the rest energy of an electron.

Got questions? Get instant answers now!

The decay energy of a short-lived particle has an uncertainty of 1.0 MeV due to its short lifetime. What is the smallest lifetime it can have?

3 . 3 × 10 22 s size 12{3 "." 3 times "10" rSup { size 8{ - "22"} } " s"} {}

Got questions? Get instant answers now!

The decay energy of a short-lived nuclear excited state has an uncertainty of 2.0 eV due to its short lifetime. What is the smallest lifetime it can have?

Got questions? Get instant answers now!

What is the approximate uncertainty in the mass of a muon, as determined from its decay lifetime?

2.66 × 10 46 kg size 12{2 "." "66" times "10" rSup { size 8{ - "46"} } " kg"} {}

Got questions? Get instant answers now!

Derive the approximate form of Heisenberg’s uncertainty principle for energy and time, Δ E Δ t h size 12{ΔE Δt approx h} {} , using the following arguments: Since the position of a particle is uncertain by Δ x λ size 12{Δx approx λ} {} , where λ size 12{λ} {} is the wavelength of the photon used to examine it, there is an uncertainty in the time the photon takes to traverse Δ x size 12{Δx} {} . Furthermore, the photon has an energy related to its wavelength, and it can transfer some or all of this energy to the object being examined. Thus the uncertainty in the energy of the object is also related to λ size 12{λ} {} . Find Δ t size 12{Δt} {} and Δ E size 12{ΔE} {} ; then multiply them to give the approximate uncertainty principle.

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask