<< Chapter < Page Chapter >> Page >
  1. By equating the work done to the energy removed, solve for the distance d size 12{x} {} .
  2. The work done by the non-conservative forces equals the initial, stored elastic potential energy. Identify the correct equation to use:
    W nc = Δ KE + PE = PE el,f PE el,i = 1 2 k μ k mg k 2 X 2 . size 12{W rSub { size 8{"nc"} } =Δ left ("KE"+"PE" right )="PE" rSub { size 8{"el,f"} } - "PE" rSub { size 8{"el,i"} } = { {1} over {2} } k left ( left ( { {μ rSub { size 8{k} } ital "mg"} over {k} } right ) rSup { size 8{2} } - X rSup { size 8{2} } right )} {}
  3. Recall that W nc = fd size 12{W rSub { size 8{ ital "nc"} } = ital "Fd"} {} .
  4. Enter the friction as f = μ k mg size 12{F=μ rSub { size 8{k} } ital "mg"} {} into W nc = fd size 12{W rSub { size 8{ ital "nc"} } = ital "Fd"} {} , thus
    W nc = μ k mgd . size 12{W size 8{"nc"}=μ rSub { size 8{k} } ital "mgd"} {}
  5. Combine these two equations to find
    1 2 k μ k mg k 2 X 2 = μ k mgd . size 12{ { {1} over {2} } k left ( left ( { {μ rSub { size 8{k} } } over {k} } right ) rSup { size 8{2} } - X rSup { size 8{2} } right )= - μ rSub { size 8{k} } } {}
  6. Solve the equation for d size 12{x} {} :
    d = k 2 μ k mg ( X 2 ( μ k mg k ) 2 ) . size 12{d= { { { {1} over {2} } ital "kX" rSup { size 8{2} } } over {μ rSub { size 8{k} } } } } {}
  7. Enter the known values into the resulting equation:
    d = 50 . 0 N/m 2 0 . 0800 0 . 200 kg 9 . 80 m/s 2 0 . 100 m 2 0 . 0800 0 . 200 kg 9 . 80 m/s 2 50 . 0 N/m 2 . size 12{d= { {"50" "." 0" N/m"} over {2 left (0 "." "0800" right ) left (0 "." "200"" kg" right ) left (9 "." "80"" m/s" rSup { size 8{2} } right )} } left ( left (0 "." "100"" m" right ) rSup { size 8{2} } - left ( { { left (0 "." "0800" right ) left (0 "." "200"" kg" right ) left (9 "." "80"" m/s" rSup { size 8{2} } right )} over {"50" "." 0" N/m"} } right ) rSup { size 8{2} } right )} {}
  8. Calculate d size 12{x} {} and convert units:
    d = 1 . 59 m . size 12{d=1 "." "59"`m} {}

Discussion b

This is the total distance traveled back and forth across x = 0 size 12{x=0} {} , which is the undamped equilibrium position. The number of oscillations about the equilibrium position will be more than d / X = ( 1 . 59 m ) / ( 0 . 100 m ) = 15 . 9 size 12{d/X= \( 1 "." "59"`m \) / \( 0 "." "100"`m \) ="15" "." 9} {} because the amplitude of the oscillations is decreasing with time. At the end of the motion, this system will not return to x = 0 size 12{x=0} {} for this type of damping force, because static friction will exceed the restoring force. This system is underdamped. In contrast, an overdamped system with a simple constant damping force would not cross the equilibrium position x = 0 size 12{x=0} {} a single time. For example, if this system had a damping force 20 times greater, it would only move 0.0484 m toward the equilibrium position from its original 0.100-m position.

This worked example illustrates how to apply problem-solving strategies to situations that integrate the different concepts you have learned. The first step is to identify the physical principles involved in the problem. The second step is to solve for the unknowns using familiar problem-solving strategies. These are found throughout the text, and many worked examples show how to use them for single topics. In this integrated concepts example, you can see how to apply them across several topics. You will find these techniques useful in applications of physics outside a physics course, such as in your profession, in other science disciplines, and in everyday life.

Why are completely undamped harmonic oscillators so rare?

Friction often comes into play whenever an object is moving. Friction causes damping in a harmonic oscillator.

Got questions? Get instant answers now!

Describe the difference between overdamping, underdamping, and critical damping.

An overdamped system moves slowly toward equilibrium. An underdamped system moves quickly to equilibrium, but will oscillate about the equilibrium point as it does so. A critically damped system moves as quickly as possible toward equilibrium without oscillating about the equilibrium.

Got questions? Get instant answers now!

Test prep for ap courses

The non-conservative damping force removes energy from a system in which form?

  1. Mechanical energy
  2. Electrical energy
  3. Thermal energy
  4. None of the above

(c)

Got questions? Get instant answers now!

The time rate of change of mechanical energy for a damped oscillator is always:

  1. 0
  2. Negative
  3. Positive
  4. Undefined
Got questions? Get instant answers now!

A 0.5-kg object is connected to a spring that undergoes oscillatory motion. There is friction between the object and the surface it is kept on given by coefficient of friction μ k = 0.06 . If the object is released 0.2 m from equilibrium, what is the distance that the object travels? Given that the force constant of the spring is 50 N m -1 and the frictional force between the objects is 0.294 N.

d = k 2 μ K m g ( X 2 μ K m g k ) 2 w h e r e k = 50 N m 1 μ k = 0.06 m = 0.5 kg d = 50 N m 1 2 × 0.06 × 9.8 m s 2 ( ( 0.2 ) 2 ( ( 0.06 × 0.5 kg × 9.8 m s 2 ) 2 ( 50 N m 1 ) 2 ) ) = 1.698 m

Got questions? Get instant answers now!

Section summary

  • Damped harmonic oscillators have non-conservative forces that dissipate their energy.
  • Critical damping returns the system to equilibrium as fast as possible without overshooting.
  • An underdamped system will oscillate through the equilibrium position.
  • An overdamped system moves more slowly toward equilibrium than one that is critically damped.

Conceptual questions

Give an example of a damped harmonic oscillator. (They are more common than undamped or simple harmonic oscillators.)

Got questions? Get instant answers now!

How would a car bounce after a bump under each of these conditions?

  • overdamping
  • underdamping
  • critical damping
Got questions? Get instant answers now!

Most harmonic oscillators are damped and, if undriven, eventually come to a stop. How is this observation related to the second law of thermodynamics?

Got questions? Get instant answers now!

Problems&Exercises

The amplitude of a lightly damped oscillator decreases by 3 . 0% size 12{3 "." 0%} {} during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask