<< Chapter < Page Chapter >> Page >

Kinetic energy and the ultimate speed limit

Kinetic energy is energy of motion. Classically, kinetic energy has the familiar expression 1 2 mv 2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {} . The relativistic expression for kinetic energy is obtained from the work-energy theorem. This theorem states that the net work on a system goes into kinetic energy. If our system starts from rest, then the work-energy theorem is

W net = KE . size 12{W rSub { size 8{"net"} } ="KE"} {}

Relativistically, at rest we have rest energy E 0 = mc 2 . The work increases this to the total energy E = γmc 2 . Thus,

W net = E E 0 = γ mc 2 mc 2 = γ 1 mc 2 .

Relativistically, we have W net = KE rel size 12{W="KE" rSub { size 8{"rel"} } } {} .

Relativistic kinetic energy

Relativistic kinetic energy is

KE rel = γ 1 mc 2 . size 12{"KE" rSub { size 8{"rel"} } = left (γ - 1 right ) ital "mc" rSup { size 8{2} } } {}

When motionless, we have v = 0 size 12{v=0} {} and

γ = 1 1 v 2 c 2 = 1 , size 12{γ= { {1} over { sqrt {1 - { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } =1} {}

so that KE rel = 0 size 12{"KE" rSub { size 8{"rel"} } =0} {} at rest, as expected. But the expression for relativistic kinetic energy (such as total energy and rest energy) does not look much like the classical 1 2 mv 2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {} . To show that the classical expression for kinetic energy is obtained at low velocities, we note that the binomial expansion for γ size 12{γ} {} at low velocities gives

γ = 1 + 1 2 v 2 c 2 . size 12{γ=1+ { {1} over {2} } { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } {}

A binomial expansion is a way of expressing an algebraic quantity as a sum of an infinite series of terms. In some cases, as in the limit of small velocity here, most terms are very small. Thus the expression derived for γ size 12{γ} {} here is not exact, but it is a very accurate approximation. Thus, at low velocities,

γ 1 = 1 2 v 2 c 2 . size 12{γ - 1= { {1} over {2} } { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } {}

Entering this into the expression for relativistic kinetic energy gives

KE rel = 1 2 v 2 c 2 mc 2 = 1 2 mv 2 = KE class .

So, in fact, relativistic kinetic energy does become the same as classical kinetic energy when v << c size 12{v"<<"c} {} .

It is even more interesting to investigate what happens to kinetic energy when the velocity of an object approaches the speed of light. We know that γ size 12{γ} {} becomes infinite as v size 12{v} {} approaches c size 12{c} {} , so that KE rel also becomes infinite as the velocity approaches the speed of light. (See [link] .) An infinite amount of work (and, hence, an infinite amount of energy input) is required to accelerate a mass to the speed of light.

The speed of light

No object with mass can attain the speed of light.

So the speed of light is the ultimate speed limit for any particle having mass. All of this is consistent with the fact that velocities less than c size 12{c} {} always add to less than c size 12{c} {} . Both the relativistic form for kinetic energy and the ultimate speed limit being c size 12{c} {} have been confirmed in detail in numerous experiments. No matter how much energy is put into accelerating a mass, its velocity can only approach—not reach—the speed of light.

In this figure a graph is shown on a coordinate system of axes. The x-axis is labeled as speed v (m/s). On the x-axis, velocity of the object is shown in terms of the speed of light starting from zero at origin to c, where c is the speed of light. The y-axis is labeled as Kinetic Energy K E (J). On the y-axis, relativistic kinetic energy is shown starting from 0 at origin to 1.0. The graph K sub r e l of relativistic kinetic energy is concave up and moving upward along the vertical line at x equals c. This graph shows that relativistic kinetic energy approaches infinity as the velocity of an object approaches the speed of light. Also shown is that when the speed of the object is equal to the speed of light c the kinetic energy is known as classical kinetic energy, which is denoted as K E sub class.
This graph of KE rel size 12{"KE" rSub { size 8{"rel"} } } {} versus velocity shows how kinetic energy approaches infinity as velocity approaches the speed of light. It is thus not possible for an object having mass to reach the speed of light. Also shown is KE class size 12{"KE" rSub { size 8{"class"} } } {} , the classical kinetic energy, which is similar to relativistic kinetic energy at low velocities. Note that much more energy is required to reach high velocities than predicted classically.

Comparing kinetic energy: relativistic energy versus classical kinetic energy

An electron has a velocity v = 0 . 990 c size 12{v=0 "." "990"c} {} . (a) Calculate the kinetic energy in MeV of the electron. (b) Compare this with the classical value for kinetic energy at this velocity. (The mass of an electron is 9 . 11 × 10 31 kg size 12{9 "." "11" times "10" rSup { size 8{ - "31"} } " kg"} {} .)

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask