<< Chapter < Page Chapter >> Page >

Calculating velocities following an elastic collision

Calculate the velocities of two objects following an elastic collision, given that

m 1 = 0 . 500 kg, m 2 = 3 . 50 kg, v 1 = 4 . 00 m/s, and v 2 = 0 . size 12{m rSub { size 8{1} } =0 "." "500"" kg, "m rSub { size 8{2} } =3 "." "50"" kg, "v rSub { size 8{1} } =4 "." "00"" m/s, and "v rSub { size 8{2} } =0 "." } {}

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is slightly simpler than the situation shown in [link] where both objects are initially moving. We are asked to find two unknowns (the final velocities v 1 and v 2 size 12{v rSub { size 8{2} } '} {} ). To find two unknowns, we must use two independent equations. Because this collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and thus v 2 = 0 size 12{v rSub { size 8{2} } =0} {} . Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Solution

For this problem, note that v 2 = 0 size 12{v rSub { size 8{2} } =0} {} and use conservation of momentum. Thus,

p 1 = p 1 + p 2 size 12{p rSub { size 8{1} } =p' rSub { size 8{1} } +p' rSub { size 8{2} } } {}

or

m 1 v 1 = m 1 v 1 + m 2 v 2 . size 12{m rSub { size 8{1} } v rSub { size 8{1} } =m rSub { size 8{1} } { {v}} sup { ' } rSub { size 8{1} } +m rSub { size 8{2} } { {v}} sup { ' } rSub { size 8{2} } } {}

Using conservation of internal kinetic energy and that v 2 = 0 size 12{v rSub { size 8{2} } =0} {} ,

1 2 m 1 v 1 2 = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 . size 12{ { {1} over {2} } m rSub { size 8{1} } v rSub { size 8{1} rSup { size 8{2} } } = { {1} over {2} } m rSub { size 8{1} } v"" lSub { size 8{1} } ' rSup { size 8{2} } + { {1} over {2} } m rSub { size 8{2} } v rSub { size 8{2} } ' rSup { size 8{2} } } {}

Solving the first equation (momentum equation) for v 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} , we obtain

v 2 = m 1 m 2 v 1 v 1 . size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )} {}

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable v 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} , leaving only v 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic equation; in this example, they are

v 1 = 4 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{1} } =4 "." "00"`"m/s"} {}

and

v 1 = 3 . 00 m/s . size 12{ { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"" m/s"} {}

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In this case, the first solution is the same as the initial condition. The first solution thus represents the situation before the collision and is discarded. The second solution ( v 1 = 3 . 00 m/s ) size 12{ \( { {v}} sup { ' } rSub { size 8{1} } = - 3 "." "00"`"m/s" \) } {} is negative, meaning that the first object bounces backward. When this negative value of v 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} is used to find the velocity of the second object after the collision, we get

v 2 = m 1 m 2 v 1 v 1 = 0 . 500 kg 3 . 50 kg 4 . 00 3 . 00 m/s size 12{ { {v}} sup { ' } rSub { size 8{2} } = { {m rSub { size 8{1} } } over {m rSub { size 8{2} } } } left (v rSub { size 8{1} } - { {v}} sup { ' } rSub { size 8{1} } right )= { {0 "." "500"`"kg"} over {3 "." "50"`"kg"} } left [4 "." "00" - left ( - 3 "." "00" right ) right ]`"m/s"} {}

or

v 2 = 1 . 00 m/s . size 12{ { {v}} sup { ' } rSub { size 8{2} } =1 "." "00"`"m/s"} {}

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The larger one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is initially at rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the internal kinetic energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it, too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

Making connections: take-home investigation—ice cubes and elastic collision

Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and observe the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating ice cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using momentum.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask