<< Chapter < Page Chapter >> Page >
I = I 1 + I 2 + I 3 . size 12{I=I rSub { size 8{1} } +I rSub { size 8{2} } +I rSub { size 8{3} } } {}

Substituting the expressions for the individual currents gives

I = V R 1 + V R 2 + V R 3 = V 1 R 1 + 1 R 2 + 1 R 3 . size 12{I= { {V} over {R rSub { size 8{1} } } } + { {V} over {R rSub { size 8{2} } } } + { {V} over {R rSub { size 8{3} } } } =V left ( { {1} over {R rSub { size 8{1} } } } + { {1} over {R rSub { size 8{2} } } } + { {1} over {R rSub { size 8{3} } } } right )} {}

Note that Ohm’s law for the equivalent single resistance gives

I = V R p = V 1 R p . size 12{I= { {V} over {R rSub { size 8{p} } } } =V left ( { {1} over {R rSub { size 8{p} } } } right )} {}

The terms inside the parentheses in the last two equations must be equal. Generalizing to any number of resistors, the total resistance R p size 12{R rSub { size 8{p} } } {} of a parallel connection is related to the individual resistances by

1 R p = 1 R 1 + 1 R 2 + 1 R . 3 + . ... size 12{ { {1} over {R rSub { size 8{p} } } } = { {1} over {R rSub { size 8{1} } } } + { {1} over {R rSub { size 8{2} } } } + { {1} over {R rSub { size 8{ "." 3} } } } + "." "." "." "." } {}

This relationship results in a total resistance R p size 12{R rSub { size 8{p} } } {} that is less than the smallest of the individual resistances. (This is seen in the next example.) When resistors are connected in parallel, more current flows from the source than would flow for any of them individually, and so the total resistance is lower.

Calculating resistance, current, power dissipation, and power output: analysis of a parallel circuit

Let the voltage output of the battery and resistances in the parallel connection in [link] be the same as the previously considered series connection: V = 12 . 0 V size 12{V="12" "." 0" V"} {} , R 1 = 1 . 00 Ω size 12{R rSub { size 8{1} } =1 "." "00" %OMEGA } {} , R 2 = 6 . 00 Ω size 12{R rSub { size 8{2} } =6 "." "00" %OMEGA } {} , and R 3 = 13 . 0 Ω size 12{R rSub { size 8{3} } ="13" "." 0 %OMEGA } {} . (a) What is the total resistance? (b) Find the total current. (c) Calculate the currents in each resistor, and show these add to equal the total current output of the source. (d) Calculate the power dissipated by each resistor. (e) Find the power output of the source, and show that it equals the total power dissipated by the resistors.

Strategy and Solution for (a)

The total resistance for a parallel combination of resistors is found using the equation below. Entering known values gives

1 R p = 1 R 1 + 1 R 2 + 1 R 3 = 1 1 . 00 Ω + 1 6 . 00 Ω + 1 13 . 0 Ω . size 12{ { {1} over {R rSub { size 8{p} } } } = { {1} over {R rSub { size 8{1} } } } + { {1} over {R rSub { size 8{2} } } } + { {1} over {R rSub { size 8{3} } } } = { {1} over {1 "." "00" %OMEGA } } + { {1} over {6 "." "00" %OMEGA } } + { {1} over {"13" "." 0 %OMEGA } } } {}

Thus,

1 R p = 1.00 Ω + 0 . 1667 Ω + 0 . 07692 Ω = 1 . 2436 Ω . size 12{ { {1} over {R rSub { size 8{p} } } } = { {1 "." "00"} over { %OMEGA } } + { {0 "." "167"} over { %OMEGA } } + { {0 "." "0769"} over { %OMEGA } } = { {1 "." "244"} over { %OMEGA } } } {}

(Note that in these calculations, each intermediate answer is shown with an extra digit.)

We must invert this to find the total resistance R p size 12{R rSub { size 8{p} } } {} . This yields

R p = 1 1 . 2436 Ω = 0 . 8041 Ω . size 12{R rSub { size 8{p} } = { {1} over {1 "." "2436"} } %OMEGA =0 "." "8041 " %OMEGA } {}

The total resistance with the correct number of significant digits is R p = 0 . 804 Ω . size 12{R rSub { size 8{p} } =0 "." "804" %OMEGA } {}

Discussion for (a)

R p is, as predicted, less than the smallest individual resistance.

Strategy and Solution for (b)

The total current can be found from Ohm’s law, substituting R p size 12{R rSub { size 8{p} } } {} for the total resistance. This gives

I = V R p = 12.0 V 0.8041 Ω = 14 . 92 A . size 12{I= { {V} over {R rSub { size 8{p} } } } = { {"12" "." 0" V"} over {0 "." "804 " %OMEGA } } ="14" "." "92"" A"} {}

Discussion for (b)

Current I size 12{I} {} for each device is much larger than for the same devices connected in series (see the previous example). A circuit with parallel connections has a smaller total resistance than the resistors connected in series.

Strategy and Solution for (c)

The individual currents are easily calculated from Ohm’s law, since each resistor gets the full voltage. Thus,

I 1 = V R 1 = 12 . 0 V 1 . 00 Ω = 12 . 0 A . size 12{I rSub { size 8{1} } = { {V} over {R rSub { size 8{1} } } } = { {"12" "." 0" V"} over {1 "." "00 " %OMEGA } } ="12" "." 0" A"} {}

Similarly,

I 2 = V R 2 = 12 . 0 V 6 . 00 Ω = 2 . 00 A size 12{I rSub { size 8{2} } = { {V} over {R rSub { size 8{2} } } } = { {"12" "." 0" V"} over {6 "." "00 " %OMEGA } } =2 "." "00"" A"} {}

and

I 3 = V R 3 = 12 . 0 V 13 . 0 Ω = 0 . 92 A . size 12{I rSub { size 8{3} } = { {V} over {R rSub { size 8{3} } } } = { {"12" "." 0" V"} over {"13" "." "0 " %OMEGA } } =0 "." "92"" A"} {}

Discussion for (c)

The total current is the sum of the individual currents:

I 1 + I 2 + I 3 = 14 . 92 A . size 12{I rSub { size 8{1} } +I rSub { size 8{2} } +I rSub { size 8{3} } ="14" "." "92"" A"} {}

This is consistent with conservation of charge.

Strategy and Solution for (d)

The power dissipated by each resistor can be found using any of the equations relating power to current, voltage, and resistance, since all three are known. Let us use P = V 2 R size 12{P= { {V rSup { size 8{2} } } over {R} } } {} , since each resistor gets full voltage. Thus,

P 1 = V 2 R 1 = ( 12 . 0 V ) 2 1 . 00 Ω = 144 W . size 12{P rSub { size 8{1} } = { {V rSup { size 8{2} } } over {R rSub { size 8{1} } } } = { { \( "12" "." 0" V" \) rSup { size 8{2} } } over {1 "." "00 " %OMEGA } } ="144"" W"} {}

Similarly,

P 2 = V 2 R 2 = ( 12 . 0 V ) 2 6 . 00 Ω = 24 . 0 W size 12{P rSub { size 8{2} } = { {V rSup { size 8{2} } } over {R rSub { size 8{2} } } } = { { \( "12" "." 0" V" \) rSup { size 8{2} } } over {6 "." "00 " %OMEGA } } ="24" "." 0" W"} {}

and

P 3 = V 2 R 3 = ( 12 . 0 V ) 2 13 . 0 Ω = 11 . 1 W . size 12{P rSub { size 8{3} } = { {V rSup { size 8{2} } } over {R rSub { size 8{3} } } } = { { \( "12" "." 0" V" \) rSup { size 8{2} } } over {"13" "." "0 " %OMEGA } } ="11" "." 1" W"} {}

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask