<< Chapter < Page Chapter >> Page >
L 0 Δ t = L Δ t 0 . size 12{ { {L rSub { size 8{0} } } over {Δt} } = { {L} over {Δt rSub { size 8{0} } } } } {}

We know that Δ t = γ Δ t 0 size 12{Δt=γΔt rSub { size 8{0} } } {} . Substituting this equation into the relationship above gives

L = L 0 γ . size 12{L= { {L rSub { size 8{0} } } over {γ} } } {}

Substituting for γ size 12{γ} {} gives an equation relating the distances measured by different observers.

Length Contraction

Length contraction L size 12{L} {} is the shortening of the measured length of an object moving relative to the observer’s frame.

L = L 0 1 v 2 c 2 . size 12{L - L rSub { size 8{0} } sqrt {1 - { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } {}

If we measure the length of anything moving relative to our frame, we find its length L size 12{L} {} to be smaller than the proper length L 0 size 12{L rSub { size 8{0} } } {} that would be measured if the object were stationary. For example, in the muon’s reference frame, the distance between the points where it was produced and where it decayed is shorter. Those points are fixed relative to the Earth but moving relative to the muon. Clouds and other objects are also contracted along the direction of motion in the muon’s reference frame.

Making connections: length contraction

One of the consequences of Einstein’s theory of special relativity is the concept of length contraction. Consider a 10-cm stick. If this stick is traveling past you at a speed close to the speed of light, its length will no longer appear to be 10 cm. The length measured when the stick is at rest is calledits proper length. The length measured when the stick is in motion close to the speed of light will always be less than the proper length. This is what is known as length contraction. But the effect of length contraction can only be observed if the stick moves really fast—close to the speed of light. In principle, when the speed of the stick is equal to the speed of light,the stick should have no length.

Calculating length contraction: the distance between stars contracts when you travel at high velocity

Suppose an astronaut, such as the twin discussed in Simultaneity and Time Dilation , travels so fast that γ = 30 . 00 size 12{γ="30" "." "00"} {} . (a) She travels from the Earth to the nearest star system, Alpha Centauri, 4.300 light years (ly) away as measured by an Earth-bound observer. How far apart are the Earth and Alpha Centauri as measured by the astronaut? (b) In terms of c size 12{c} {} , what is her velocity relative to the Earth? You may neglect the motion of the Earth relative to the Sun. (See [link] .)

In part a the distance between the earth and the alpha centauri is measured as L-zero. A clock given in this figure is showing a time delta-t. A spaceship flying with velocity of v equals L-zero over delta-t from the earth to the star is shown.  Part b shows the spaceship frame of reference from which the distance L between the earth and star is contracted as they seem to move with same velocity in opposite direction. In part b the clock shows less time elapsed than the clock in part a.
(a) The Earth-bound observer measures the proper distance between the Earth and the Alpha Centauri. (b) The astronaut observes a length contraction, since the Earth and the Alpha Centauri move relative to her ship. She can travel this shorter distance in a smaller time (her proper time) without exceeding the speed of light.

Strategy

First note that a light year (ly) is a convenient unit of distance on an astronomical scale—it is the distance light travels in a year. For part (a), note that the 4.300 ly distance between the Alpha Centauri and the Earth is the proper distance L 0 size 12{L rSub { size 8{0} } } {} , because it is measured by an Earth-bound observer to whom both stars are (approximately) stationary. To the astronaut, the Earth and the Alpha Centauri are moving by at the same velocity, and so the distance between them is the contracted length L size 12{L} {} . In part (b), we are given γ size 12{γ} {} , and so we can find v size 12{v} {} by rearranging the definition of γ size 12{γ} {} to express v size 12{v} {} in terms of c size 12{c} {} .

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask