<< Chapter < Page Chapter >> Page >
F B = w fl , size 12{F rSub { size 8{B} } =w rSub { size 8{"fl"} } } {}

where F B size 12{F rSub { size 8{B} } } {} is the buoyant force and w fl size 12{w rSub { size 8{"fl"} } } {} is the weight of the fluid displaced by the object. Archimedes' principle is valid in general, for any object in any fluid, whether partially or totally submerged.

Archimedes' principle

According to this principle the buoyant force on an object equals the weight of the fluid it displaces. In equation form, Archimedes' principle is

F B = w fl , size 12{F rSub { size 8{B} } =w rSub { size 8{"fl"} } } {}

where F B size 12{F rSub { size 8{B} } } {} is the buoyant force and w fl size 12{w rSub { size 8{"fl"} } } {} is the weight of the fluid displaced by the object.

Humm … High-tech body swimsuits were introduced in 2008 in preparation for the Beijing Olympics. One concern (and international rule) was that these suits should not provide any buoyancy advantage. How do you think that this rule could be verified?

Making connections: take-home investigation

The density of aluminum foil is 2.7 times the density of water. Take a piece of foil, roll it up into a ball and drop it into water. Does it sink? Why or why not? Can you make it sink?

Floating and sinking

Drop a lump of clay in water. It will sink. Then mold the lump of clay into the shape of a boat, and it will float. Because of its shape, the boat displaces more water than the lump and experiences a greater buoyant force. The same is true of steel ships.

Calculating buoyant force: dependency on shape

(a) Calculate the buoyant force on 10,000 metric tons ( 1 . 00 × 10 7 kg ) size 12{ \( 1 "." "00" times "10" rSup { size 8{7} } `"kg" \) } {} of solid steel completely submerged in water, and compare this with the steel's weight. (b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1 . 00 × 10 5 m 3 size 12{1 "." "00" times "10" rSup { size 8{5} } `m rSup { size 8{3} } } {} of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in [link] . We note that, since the steel is completely submerged, its volume and the water's volume are the same. Once we know the volume of water, we can find its mass and weight.

Solution for (a)

First, we use the definition of density ρ = m V size 12{ρ= { {m} over {V} } } {} to find the steel's volume, and then we substitute values for mass and density. This gives

V st = m st ρ st = 1 . 00 × 10 7 kg 7 . 8 × 10 3 kg/m 3 = 1 . 28 × 10 3 m 3 . size 12{v rSub { size 8{"st"} } = { {m rSub { size 8{"st"} } } over {ρ rSub { size 8{"st"} } } } = { {1 "." "00" times "10" rSup { size 8{7} } `"kg"} over {7 "." 8 times "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } } } =1 "." "28" times "10" rSup { size 8{3} } `m rSup { size 8{3} } } {}

Because the steel is completely submerged, this is also the volume of water displaced, V w size 12{V rSub { size 8{w} } } {} . We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives

m w = ρ w V w = ( 1.000 × 10 3 kg/m 3 ) ( 1.28 × 10 3 m 3 ) = 1.28 × 10 6 kg. alignc { stack { size 12{m rSub { size 8{w} } =ρ rSub { size 8{w} } V rSub { size 8{w} } = \( 1 "." "000" times "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } \) \( 1 "." "28" times "10" rSup { size 8{3} } `m rSup { size 8{3} } \) } {} #=1 "." "28" times "10" rSup { size 8{6} } `"kg" "." {} } } {}

By Archimedes' principle, the weight of water displaced is m w g size 12{m rSub { size 8{w} } g} {} , so the buoyant force is

F B = w w = m w g = 1.28 × 10 6 kg 9.80 m/s 2 = 1.3 × 10 7 N. alignc { stack { size 12{F rSub { size 8{B} } =w rSub { size 8{w} } =m rSub { size 8{w} } g= left (1 "." "28" times "10" rSup { size 8{6} } `"kg" right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right )} {} #=1 "." 3 times "10" rSup { size 8{7} } `N "." {} } } {}

The steel's weight is m w g = 9 . 80 × 10 7 N size 12{m rSub { size 8{w} } g=9 "." "80" times "10" rSup { size 8{7} } `N} {} , which is much greater than the buoyant force, so the steel will remain submerged. Note that the buoyant force is rounded to two digits because the density of steel is given to only two digits.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

Solution for (b)

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is,

m w = ρ w V w = 1.000 × 10 3 kg/m 3 1.00 × 10 5 m 3 = 1.00 × 10 8 kg. alignc { stack { size 12{m rSub { size 8{w} } =ρ rSub { size 8{w} } V rSub { size 8{w} } = left (1 "." "000" times "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } right ) left (1 "." "00" times "10" rSup { size 8{5} } `m rSup { size 8{3} } right )} {} #=1 "." "00" times "10" rSup { size 8{8} } `"kg" "." {} } } {}

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask