<< Chapter < Page Chapter >> Page >

Alpha, beta, and gamma

Research begun by people such as New Zealander Ernest Rutherford soon after the discovery of nuclear radiation indicated that different types of rays are emitted. Eventually, three types were distinguished and named alpha α size 12{ left (α right )} {} , beta β size 12{ left (β right )} {} , and gamma γ size 12{ left (γ right )} {} , because, like x-rays, their identities were initially unknown. [link] shows what happens if the rays are passed through a magnetic field. The γ size 12{γ} {} s are unaffected, while the α size 12{γ} {} s and β size 12{β} {} s are deflected in opposite directions, indicating the α size 12{α} {} s are positive, the β size 12{β} {} s negative, and the γ size 12{γ} {} s uncharged. Rutherford used both magnetic and electric fields to show that α size 12{α} {} s have a positive charge twice the magnitude of an electron, or + 2 q e size 12{+2 lline q rSub { size 8{e} } rline } {} . In the process, he found the α size 12{γ} {} s charge to mass ratio to be several thousand times smaller than the electron’s. Later on, Rutherford collected α size 12{γ} {} s from a radioactive source and passed an electric discharge through them, obtaining the spectrum of recently discovered helium gas. Among many important discoveries made by Rutherford and his collaborators was the proof that α size 12{γ} {} radiation is the emission of a helium nucleus . Rutherford won the Nobel Prize in chemistry in 1908 for his early work. He continued to make important contributions until his death in 1934.

The figure shows north and south poles of a magnet through which three rays labeled as alpha beta and gamma are passed. After passing through a magnetic field the alpha ray is slightly deflected toward the right. The beta ray is deflected toward the left and the gamma ray is not deflected.
Alpha, beta, and gamma rays are passed through a magnetic field on the way to a phosphorescent screen. The α size 12{γ} {} s and β size 12{β} {} s bend in opposite directions, while the γ size 12{γ} {} s are unaffected, indicating a positive charge for α size 12{γ} {} s, negative for β size 12{β} {} s, and neutral for γ size 12{γ} {} s. Consistent results are obtained with electric fields. Collection of the radiation offers further confirmation from the direct measurement of excess charge.

Other researchers had already proved that β size 12{β} {} s are negative and have the same mass and same charge-to-mass ratio as the recently discovered electron. By 1902, it was recognized that β size 12{β} {} radiation is the emission of an electron . Although β size 12{β} {} s are electrons, they do not exist in the nucleus before it decays and are not ejected atomic electrons—the electron is created in the nucleus at the instant of decay.

Since γ size 12{γ} {} s remain unaffected by electric and magnetic fields, it is natural to think they might be photons. Evidence for this grew, but it was not until 1914 that this was proved by Rutherford and collaborators. By scattering γ size 12{γ} {} radiation from a crystal and observing interference, they demonstrated that γ size 12{γ} {} radiation is the emission of a high-energy photon by a nucleus . In fact, γ size 12{γ} {} radiation comes from the de-excitation of a nucleus, just as an x ray comes from the de-excitation of an atom. The names " γ size 12{γ} {} ray" and "x ray" identify the source of the radiation. At the same energy, γ size 12{γ} {} rays and x rays are otherwise identical.

Properties of nuclear radiation
Type of Radiation Range
α size 12{α} {} -Particles A sheet of paper, a few cm of air, fractions of a mm of tissue
β size 12{β} {} -Particles A thin aluminum plate, or tens of cm of tissue
γ size 12{γ} {} Rays Several cm of lead or meters of concrete

Ionization and range

Two of the most important characteristics of α size 12{α} {} , β size 12{β} {} , and γ size 12{γ} {} rays were recognized very early. All three types of nuclear radiation produce ionization in materials, but they penetrate different distances in materials—that is, they have different ranges . Let us examine why they have these characteristics and what are some of the consequences.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask