<< Chapter < Page Chapter >> Page >

Two general rules for combining quarks to form hadrons are:

  1. Baryons are composed of three quarks, and antibaryons are composed of three antiquarks.
  2. Mesons are combinations of a quark and an antiquark.

One of the clever things about this scheme is that only integral charges result, even though the quarks have fractional charge.

All combinations are possible

All quark combinations are possible. [link] lists some of these combinations. When Gell-Mann and Zweig proposed the original three quark flavors, particles corresponding to all combinations of those three had not been observed. The pattern was there, but it was incomplete—much as had been the case in the periodic table of the elements and the chart of nuclides. The Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} particle, in particular, had not been discovered but was predicted by quark theory. Its combination of three strange quarks, sss size 12{ ital "sss"} {} , gives it a strangeness of 3 size 12{ - 3} {} (see [link] ) and other predictable characteristics, such as spin, charge, approximate mass, and lifetime. If the quark picture is complete, the Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} should exist. It was first observed in 1964 at Brookhaven National Laboratory and had the predicted characteristics as seen in [link] . The discovery of the Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} was convincing indirect evidence for the existence of the three original quark flavors and boosted theoretical and experimental efforts to further explore particle physics in terms of quarks.

Patterns and puzzles: atoms, nuclei, and quarks

Patterns in the properties of atoms allowed the periodic table to be developed. From it, previously unknown elements were predicted and observed. Similarly, patterns were observed in the properties of nuclei, leading to the chart of nuclides and successful predictions of previously unknown nuclides. Now with particle physics, patterns imply a quark substructure that, if taken literally, predicts previously unknown particles. These have now been observed in another triumph of underlying unity.

The figure shows a trace of a bubble chamber picture that shows the first observation of an omega minus particle. The trace looks like the branch of a small bush. There is a stem at the bottom labeled K minus, then a vertex from which comes a short arched segment labeled omega minus. This segment branches into a dashed line labeled xi zero and an arched line labeled pie minus. Various other solid and dashed lines continue upwards with various labels, such as lambda zero, gamma, K plus, and so on. From the scale bar in the figure, the sigma minus segment is about five centimeters long, which is much shorter than most of the other segments.
The image relates to the discovery of the Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} . It is a secondary reaction in which an accelerator-produced K size 12{K rSup { size 8{ - {}} } } {} collides with a proton via the strong force and conserves strangeness to produce the Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} with characteristics predicted by the quark model. As with other predictions of previously unobserved particles, this gave a tremendous boost to quark theory. (credit: Brookhaven National Laboratory)

Quantum numbers from quark composition

Verify the quantum numbers given for the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} particle in [link] by adding the quantum numbers for its quark composition as given in [link] .

Strategy

The composition of the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} is given as uss size 12{ ital "uss"} {} in [link] . The quantum numbers for the constituent quarks are given in [link] . We will not consider spin, because that is not given for the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} . But we can check on charge and the other quantum numbers given for the quarks.

Solution

The total charge of uss is + 2 3 q e 1 3 q e 1 3 q e = 0 size 12{+ left ( { {2} over {3} } right )q rSub { size 8{e} } - left ( { {1} over {3} } right )q rSub { size 8{e} } - left ( { {1} over {3} } right )q rSub { size 8{e} } =0} {} , which is correct for the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} . The baryon number is + 1 3 + 1 3 + 1 3 = 1 size 12{+ left ( { {1} over {3} } right )+ left ( { {1} over {3} } right )+ left ( { {1} over {3} } right )=1} {} , also correct since the Ξ 0 size 12{Ξ rSup { size 8{0} } } {} is a matter baryon and has B = 1 size 12{B=1} {} , as listed in [link] . Its strangeness is S = 0 1 1 = 2 size 12{S=0 - 1 - 1= - 2} {} , also as expected from [link] . Its charm, bottomness, and topness are 0, as are its lepton family numbers (it is not a lepton).

Discussion

This procedure is similar to what the inventors of the quark hypothesis did when checking to see if their solution to the puzzle of particle patterns was correct. They also checked to see if all combinations were known, thereby predicting the previously unobserved Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} as the completion of a pattern.

Got questions? Get instant answers now!

Questions & Answers

sound waves can be modeled as a change in pressure ,why is the change on in pressure used and not the actual pressure
Dotto Reply
what is the best
Kelly Reply
Water,air,fire
Maung
I am a university student of Myanmar.I am first year,first semester.I want to learn about physics.
Maung
two charges qA and qB are separated by a distance x. if we double the distance between the charges and triple the magnitude of the charge A, what happens to the magnitude of the force that charge A exerts on charge B. what happens to the magnitude of the force that charge B exerts on charge A
tanla Reply
how to get mcq and essay?
Owen Reply
what is force
Ibrahim Reply
force is a pull or push action on an object or a body.
joseph
what is a significant figure? and give example
Frederick
numerical chapter number 3
Sajid Reply
joined
Ibrahim
a reflected ray on a mirror makes an angle of 20degree with the incident ray when the mirror is rotated 15degree what angle will the incident ray now make with the reflected ray
Akinyemi Reply
what is simple harmonic motion
Solomon Reply
how vapour pressure of a liquid lost through convection
Yomzi Reply
Roofs are sometimes pushed off vertically during a tropical cyclone, and buildings sometimes explode outward when hit by a tornado. Use Bernoulli’s principle to explain these phenomena.
Aliraza Reply
Plz answer the question ☝️☝️
Aliraza
what's the basic si unit of acceleration
ELLOIN Reply
Explain why the change in velocity is different in the two frames, whereas the change in kinetic energy is the same in both.
Fabian Reply
Insulators (nonmetals) have a higher BE than metals, and it is more difficult for photons to eject electrons from insulators. Discuss how this relates to the free charges in metals that make them good conductors.
Muhammad Reply
Is the photoelectric effect a direct consequence of the wave character of EM radiation or of the particle character of EM radiation? Explain briefly.
Muhammad
Determine the total force and the absolute pressure on the bottom of a swimming pool 28.0m by 8.5m whose uniform depth is 1 .8m.
Henny Reply
how solve this problem?
Foday
P(pressure)=density ×depth×acceleration due to gravity Force =P×Area(28.0x8.5)
Fomukom
for the answer to complete, the units need specified why
muqaddas Reply
That's just how the AP grades. Otherwise, you could be talking about m/s when the answer requires m/s^2. They need to know what you are referring to.
Kyle

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask