<< Chapter < Page Chapter >> Page >

Note that the electric field is defined for a positive test charge q size 12{q} {} , so that the field lines point away from a positive charge and toward a negative charge. (See [link] .) The electric field strength is exactly proportional to the number of field lines per unit area, since the magnitude of the electric field for a point charge is E = k | Q | / r 2 size 12{E= { ital "kQ"} slash {r rSup { size 8{2} } } } {} and area is proportional to r 2 size 12{r rSup { size 8{2} } } {} . This pictorial representation, in which field lines represent the direction and their closeness (that is, their areal density or the number of lines crossing a unit area) represents strength, is used for all fields: electrostatic, gravitational, magnetic, and others.

In part a, electric field lines emanating from a positive charge is shown by the vector arrows in all direction of two dimensional space and the density of these field lines is less. In part b, electric field lines entering the negative charge is shown by the vector arrows coming from all direction of two dimensional space and the density of these field lines is less. In part c, electric field lines entering the negative charge is shown by the vector arrows coming from all direction of two dimensional space and the density of these field lines is large.
The electric field surrounding three different point charges. (a) A positive charge. (b) A negative charge of equal magnitude. (c) A larger negative charge.

In many situations, there are multiple charges. The total electric field created by multiple charges is the vector sum of the individual fields created by each charge. The following example shows how to add electric field vectors.

Adding electric fields

Find the magnitude and direction of the total electric field due to the two point charges, q 1 size 12{q rSub { size 8{1} } } {} and q 2 size 12{q rSub { size 8{2} } } {} , at the origin of the coordinate system as shown in [link] .

Two charges are placed on a coordinate axes. Q two is at the position x equals 4 and y equals 0 centimeters. Q one is at the position x equals 0 and y equals two centimeters. Charge on q one is plus five point zero nano coulomb and charge on q two is plus ten nano coulomb. The electric field, E one having a magnitude of one point one three multiplied by ten raise to the power five Newton per coulomb is represented by a vector arrow along positive y axis starting from the origin. The electric field, E two having magnitude zero point five six multiplied by ten raise to the power five Newton per coulomb is represented by a vector arrow along negative x axis starting from the origin. The resultant field makes an angle of sixty three point four degree above the negative y axis having magnitude one point two six multiplied by ten raise to the power five Newton per coulomb is represented by a vector arrow pointing away from the origin in the second quadrant.
The electric fields E 1 size 12{E rSub { size 8{1} } } {} and E 2 size 12{E rSub { size 8{2} } } {} at the origin O add to E tot size 12{E rSub { size 8{"tot"} } } {} .

Strategy

Since the electric field is a vector (having magnitude and direction), we add electric fields with the same vector techniques used for other types of vectors. We first must find the electric field due to each charge at the point of interest, which is the origin of the coordinate system (O) in this instance. We pretend that there is a positive test charge, q size 12{q} {} , at point O, which allows us to determine the direction of the fields E 1 size 12{E rSub { size 8{1} } } {} and E 2 size 12{E rSub { size 8{2} } } {} . Once those fields are found, the total field can be determined using vector addition    .

Solution

The electric field strength at the origin due to q 1 size 12{q rSub { size 8{1} } } {} is labeled E 1 size 12{E rSub { size 8{1} } } {} and is calculated:

E 1 = k q 1 r 1 2 = 8 . 99 × 10 9 N m 2 /C 2 5 . 00 × 10 9 C 2 . 00 × 10 2 m 2 E 1 = 1 . 124 × 10 5 N/C . alignl { stack { size 12{E rSub { size 8{1} } =k { {q rSub { size 8{1} } } over {r rSub { size 8{1} } rSup { size 8{2} } } } = left (9 "." "00" times "10" rSup { size 8{9} } N cdot m rSup { size 8{2} } "/C" rSup { size 8{2} } right ) { { left (5 "." "00" times "10" rSup { size 8{ - 9} } C right )} over { left (2 "." "00" times "10" rSup { size 8{ - 2} } m right ) rSup { size 8{2} } } } } {} #E rSub { size 8{1} } =1 "." "125" times "10" rSup { size 8{5} } "N/C" {} } } {}

Similarly, E 2 size 12{E rSub { size 8{2} } } {} is

E 2 = k q 2 r 2 2 = 8 . 99 × 10 9 N m 2 /C 2 10 . 0 × 10 9 C 4 . 00 × 10 2 m 2 E 2 = 0 . 5619 × 10 5 N/C . alignl { stack { size 12{E rSub { size 8{2} } =k { {q rSub { size 8{2} } } over {r rSub { size 8{2} } rSup { size 8{2} } } } = left (9 "." "00" times "10" rSup { size 8{9} } N cdot m rSup { size 8{2} } "/C" rSup { size 8{2} } right ) { { left ("10" "." 0 times "10" rSup { size 8{ - 9} } C right )} over { left (4 "." "00" times "10" rSup { size 8{ - 2} } m right ) rSup { size 8{2} } } } } {} #E rSub { size 8{2} } =0 "." "5625" times "10" rSup { size 8{5} } "N/C" {} } } {}

Four digits have been retained in this solution to illustrate that E 1 size 12{E rSub { size 8{1} } } {} is exactly twice the magnitude of E 2 size 12{E rSub { size 8{2} } } {} . Now arrows are drawn to represent the magnitudes and directions of E 1 size 12{E rSub { size 8{1} } } {} and E 2 size 12{E rSub { size 8{2} } } {} . (See [link] .) The direction of the electric field is that of the force on a positive charge so both arrows point directly away from the positive charges that create them. The arrow for E 1 size 12{E rSub { size 8{1} } } {} is exactly twice the length of that for E 2 size 12{E rSub { size 8{2} } } {} . The arrows form a right triangle in this case and can be added using the Pythagorean theorem. The magnitude of the total field E tot size 12{E rSub { size 8{"tot"} } } {} is

E tot = ( E 1 2 + E 2 2 ) 1/2 = { ( 1.124 × 10 5 N/C ) 2 + ( 0.5619 × 10 5 N/C ) 2 } 1/2 = 1.26 × 10 5 N/C. alignl { stack { size 12{E rSub { size 8{ ital "tot"} } `= \( E rSub { size 8{1} } rSup { size 8{2} } `+`E rSub { size 8{2} } rSup { size 8{2} } \) rSup { size 8{ {1} wideslash {2} } } } {} #~``=` lbrace \( 1 "." "125" times "10" rSup { size 8{5} } `"N/C" \) rSup { size 8{2} } `+` \( 0 "." "5625" times "10" rSup { size 8{5} } `"N/C" \) rSup { size 8{2} } rbrace rSup { size 8{ {1} wideslash {2} } } {} # `~`=``1 "." "26" times "10" rSup { size 8{5} } `"N/C" {}} } {}

The direction is

θ = tan 1 E 1 E 2 = tan 1 1 . 124 × 10 5 N/C 0 . 5619 × 10 5 N/C = 63 . , alignl { stack { size 12{θ="tan" rSup { size 8{ - 1} } left ( { {E rSub { size 8{1} } } over {E rSub { size 8{2} } } } right )} {} #="tan" rSup { size 8{ - 1} } left lbrace { {1 "." "125" times "10" rSup { size 8{5} } " N/C"} over {0 "." "5625" times "10" rSup { size 8{5} } " N/C"} } right rbrace {} # ="63" "." 4° {}} } {}

or 63.4º above the x -axis.

Discussion

In cases where the electric field vectors to be added are not perpendicular, vector components or graphical techniques can be used. The total electric field found in this example is the total electric field at only one point in space. To find the total electric field due to these two charges over an entire region, the same technique must be repeated for each point in the region. This impossibly lengthy task (there are an infinite number of points in space) can be avoided by calculating the total field at representative points and using some of the unifying features noted next.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask